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Abstract 

This paper aims at empirically exploring the relationships between most of the existing design coupling, cohesion, 
and inheritance measures for object-oriented (OO) systems, and the fault-proneness of OO system classes. The 
underlying goal of this study is to better understand the relationship between existing design measurement in OO 
systems and the quality of the software developed. In addition, we aim at assessing whether such relationships, 
once modeled, can be used to effectively drive and focus inspections or testing.  

The study described here is a replication of an analogous study conducted in a university environment with 
systems developed by students. In order to draw more general conclusions and to (dis)confirm the results obtained 
there, we now replicated the study using data collected on an industrial system developed by professionals. 

Results show that many of our findings are consistent across systems, despite the very disparate nature of the 
systems under study. Some of the strong dimensions captured by the measures in each data set are visible in both 
the university and industrial case study. For example, the frequency of method invocations appears to be the main 
driving factor of fault-proneness in all systems. However, there are also differences across studies, which illustrate 
the fact that, although many principles and techniques can be reused, quality does not follow universal laws and 
quality models must be developed locally, wherever needed.  
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1 Introduction 
A large number of object-oriented (OO) measures have been proposed in the literature ([5], [11], [13], [14], [18], 
[21], [23], [24], [25], [26]). A particular emphasis has been given to the measurement of design artifacts, in order 
to help assess quality early on during the development process. Such measures are aimed at providing ways of 
assessing the quality of software, for example, in the context of large scale software acquisition [28]. Such an 
assessment of design quality is objective, and the measurement can be automated. Once the necessary measurement 
instruments are in place, the assessment of large software systems can be thus done very fast, at a low cost, with 
little human involvement. But how do we know what measures actually capture important quality aspects? Many of 
the measures proposed and their relationships to external quality attributes of OO designs, have been the focus of 
little empirical investigation ([1], [5], [6], [15], [16], [23]). It is therefore difficult to assess whether these measures 
capture complementary dimensions or are indicators of any relevant external quality attributes such as reliability or 
maintainability.  In this context, it is interesting to note that the new ISO/IEC international standard (14598) [33] 
on software product quality states that “Internal metrics are of little value unless there is evidence that they are 
related to external quality” and that “Internal metrics should also have predictive validity, that is that they should 
correlate with some desired external criterion”. The general opinion of the practitioners involved in the making of 
this ISO standard seems to be that empirical investigations regarding product internal measurement and its 
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relationship to external quality measures are, from a practical perspective, a crucial issue for the betterment of 
quality control early on in the life cycle. This is, however, in sharp contrast to the lack of empirical results 
published to date.  

Recently, some of the authors performed an in-depth, comprehensive analysis of most of the published OO 
measures on students’ projects [6] of rather small sizes. Based on data collected in an experiment in a university 
setting, three questions were addressed: 

• Are existing OO design measures capturing different dimensions and structural aspects? If not, what are the 
underlying structural dimensions they actually capture? Analyzing the structural dimensions covered by the 
design measures sheds some light on the amount of redundancy that is present among existing measures, and 
helps to better interpret what individual measures are really capturing. 

• What is the relationship between these measures and the likelihood of detecting a fault in a class, i.e., its fault-
proneness? Which ones strongly affect fault-proneness? The high cognitive complexity of classes may result in 
many different types of problems such as low maintainability or high fault-proneness. However, fault-
proneness is not only an important quality aspect related to class cognitive complexity but also the easiest one 
to observe and measure, hence its use in our studies. By relating the measures to fault-proneness, we can 
identify the important drivers of fault-proneness, which are candidates to be used as quality benchmarks. 

• How accurate are the existing measures in predicting faulty classes? To what extent can they be used to drive 
code and design inspections? It is important to evaluate the accuracy of prediction models in the context of a 
realistic usage scenario, to demonstrate the potential of such models, and how they can be applied in practice. 

In order to draw more general conclusions and (dis)confirm the results obtained in our student experiments, we 
replicate here this analysis on data we collected on an industrial project which is currently in use and under 
maintenance. In [6], we proposed and applied a precise, complete, and repeatable analysis procedure, which was 
designed to facilitate such replications. In this paper, we repeat this procedure to demonstrate how each of the steps 
in the analysis procedure contributes towards making clear, systematic comparisons across studies. 

We identified a number of structural dimensions in OO designs that appear to be related to class fault-proneness 
across the two data sets. Considering the significant differences between the students’ systems and the industrial 
system studied here (e.g., in terms of size, distribution of the measures, domain, programmer experience), we hope 
to draw conclusions that should be robust across many systems. Further replication is of course necessary to build 
an adequate body of knowledge regarding the use of OO design measures.  

The paper is organized as follows. Section 2 describes the goals and setting of the empirical study, and the data 
collected. Section 3 describes the methodology used to analyze the data. The results of this analysis are then 
presented in Section 4, where we also compare the results to those obtained for the students’ systems in [6]. We 
draw our conclusions in Section 5. 

2 The Empirical Study Design 
In this section, we provide some background on the systems that are used in this study, the data collected, the 
dependent and independent variables, and the hypotheses we wish to investigate. 

2.1 Description of the empirical study 

The system used for this study is an open multi-agent system development environment, called LALO (Langage 
d'Agents Logiciel Objet). This system has been developed and maintained since 1993 at CRIM (Centre de 
Recherche Informatique de Montréal). The users of LALO are mainly universities and research centers.  

The LALO system consists of 83 classes that were developed from scratch, and seven additional classes that were 
automatically generated by code generators. These 90 C++ classes have a total of approximately 40K source lines 
of code (SLOC). The automatically generated classes were not investigated since they are much less likely to 
contain faults than classes implemented manually. In fact, the use of these classes could have biased the results. 

In addition to the 90 application-specific classes, a number of standard library classes for IO, threading, socket 
communication, etc., are used in the LALO system. 
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LALO was mostly developed under Windows NT using Visual C++ and then ported to Sun OS and Solaris. We 
have investigated only the Sun OS version. Porting the LALO system to different platforms was an easy task that 
was not the source of additional faults. 

Six developers have worked on the LALO system over its lifetime, with at most three developers working on the 
system in parallel. All developers had several years of experience in system development, and four developers had 
worked on OO systems before. 

The following relevant items were collected for the empirical study: 

• The source code of the LALO system, version 1.3 
• Fault data related to failures detected by world-wide users of LALO, over a period of about one year. 
A tool developed at the Fraunhofer IESE, and based on the FAST parser technology of the SEMA group’s 
Concerto2/AUDIT tools [18], was used to extract the values for the object-oriented measures directly from the 
source code of LALO version 1.3. To collect the fault data, change report forms (CRF) were used to document the 
nature of each problem reported by a LALO user, the names of the faulty C++ classes, and the type and location of 
the maintenance change. The CRFs were registered in a revision control system, which could then be used to 
generate statistics about the number of faults traced back to each individual class. 

2.2 Dependent variable 

The goal of this study is to empirically investigate the relationships between object-oriented design measures and 
fault-proneness at the class level. We therefore need to select a suitable and practical measure of fault-proneness as 
the dependent variable for our study. 

In this paper, fault-proneness is defined as the probability of detecting a fault in a class. As described in a section 
below, we chose a classification technique, called logistic regression, which is based on predicting event 
probabilities. In our instance, an event is a detection of a fault in a class due to a failure reported by a user. The 
probability of fault detection is described as a function of the structural properties of the classes. A rigorous 
definition, and examples to illustrate this concept, are given in Section 3.1, where we introduce logistic regression. 

Clearly, other choices for the dependent variable could have been used (e.g., fault density) but, to a large extent, 
such a definition is driven by the choice of the modeling technique used for data analysis. Furthermore, the 
alternative choice of fault density as a dependent variable has its own problems. Even when there is no causal 
relationship between size and number of faults, a negative correlation between size and fault density can be found 
[30]. This is, however, a pure mathematical artifact, which makes any analysis of the impact of size on fault-
proneness difficult.  

2.3 Independent variables 

The measures of coupling, cohesion, and inheritance identified in a literature survey on object-oriented design 
measures [7][8] are the independent variables used in this study. We focus on design measurement since we want 
the measurement-based models investigated in this paper to be usable at early stages of software development. 
Furthermore, we only use measures defined at the class level since this is also the granularity at which the fault 
data could realistically be collected. 

We consider a total of 28 coupling measures, 10 cohesion measures, and 11 inheritance measures. Another 
important aspect to consider is the size of classes. We will investigate the relationship of coupling, cohesion, and 
inheritance measures to size measures and whether all the former, more complex measures help build better 
predictive models than size alone. This will be further described and justified in Section 3.2.3. The definitions of 
all measures used are summarized in the Appendix. 

In order to make possible the use of these measures at the design stage, we adapted some of the measures involving 
counts of method invocations as follows. Measures that are based on counts of multiple invocations of pairs of 
methods (say methods m’ and m) were changed to be solely sensitive to the fact a given method invokes another 
one at least once. The rationale for this decision is that the precise number of times a given method m’ invokes m is 
information which is available only after implementation is completed, whereas the information that m’ invokes m 
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is usually available earlier during the design phase. The measures affected by this simplification are MPC, the ICP 
measures, the method-method interaction measures by Briand et al [5], and ICH.1 

The values for each of the design measures were collected for each of the 83 LALO classes that were developed 
from scratch. At this stage, it is pertinent to consider the influence of the library classes and the automatically 
generated classes (for simplicity, we collectively refer to these classes as ‘library classes’ hereafter). For coupling 
measures, a decision regarding whether or not to count coupling to library classes will have an impact on the 
computed measures' values. We hypothesized that a class is more likely to be fault prone if it is coupled to an 
application class than if it is coupled to a library class (although this may be dependent on the experience of the 
developer with the class library being used, or how well the library is documented). Consequently, the coupling 
measure were calculated for each application class twice: counting coupling to other application classes only, and 
counting coupling to library classes only. Analysis was then performed on both variants of the measures.  

Similarly, for inheritance we could hypothesize that deriving a class from a library class has a different effect on 
the derived class than deriving it from a system-specific non-library class. However, in the LALO system we found 
inheritance relationships only between non-library classes, but not between library- and non-library classes. 
Therefore, it was not necessary to measure inheritance with library- and non-library classes separately.  

2.4 Hypotheses 

In this study, we want to test a number of hypotheses, which relate various design measures to fault-proneness. Our 
hypotheses are mostly derived from the causal chain depicted in Figure 1: The structural properties of a class, 
measured by the coupling, cohesion, and inheritance measures, affect the cognitive complexity of the class. By 
cognitive complexity we mean the mental burden of the persons who have to deal with the class (developers, 
inspectors, testers, maintainers, etc.). We believe that it is the, sometimes necessary, high cognitive complexity of a 
class which causes it to display undesirable external qualities, such as increased fault-proneness, or decreased 
maintainability and testability. Figure 1 thus illustrates why, in our opinion, structural properties affect external 
class quality. Note, however, that due the difficulty involved in directly measuring cognitive complexity 
(subjectivity, unavailability of most developers at the time this study was performed) we do not formally test this 
explanation, but only look at the relationship between the more easily measured structural class properties, and 
fault proneness as one example of external quality. 

 

 

Structural Class
Properties

(e.g., coupling)

Cognitive
Complexity

External Quality Attributes
(e.g, fault-proneness,

maintainability)
affect affect

 
Figure 1: Relationships between structural class properties, cognitive complexity, and external quality  

The structural properties of a class are not, however, the only factors which affect a class’ cognitive complexity. 
For instance, the completeness and traceability of the documentation will also have an impact. Cognitive 
complexity is also dependent on the individuals who deal with the class and is to some degree subjective. Even if 
we restrict our attention to structural properties, their relationship to external quality attributes will be affected 
(i.e., interactions) by other factors such as the software engineer’s capability and experience and the development 
methodology in place.  So, although we attempt here to identify general trends, we have to expect variability, 
whose extent is not known. In the context of the more general program of research depicted in Figure 1, we focus, 
in this study, on an external class quality which can be measured easily and objectively: fault-proneness. 

The following hypothesis will be tested in this study: 

H-IC (for all import coupling measures): A class with high import coupling is more likely to be fault-prone that a 
class with low import coupling. A class with high import coupling relies on many externally provided services. 
Understanding such a class requires knowledge of all these services. The more external services a class relies on, 

                                                        
1 This simplification was also performed for the UMD study, though we neglected to mention it explicitly there. 
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the larger the likelihood to misunderstand or misuse some of these services. Therefore, the class is more difficult to 
understand and develop, and thus likely to be more fault-prone. 

H-EC (for export coupling measures): A class with high export coupling is more likely to be fault-prone than a 
class with low export coupling. A class with high export coupling has a large influence on the system: many other 
classes rely on it. Failures occurring in a system are therefore more likely to be traced back to a fault in the class, 
i.e., the class is more fault-prone. 

H-COH (for cohesion measures): A class with low cohesion is more likely to be fault-prone than a class with high 
cohesion. Low cohesion indicates inappropriate design, which is likely to be more fault-prone. 

H-Depth (measures DIT, AID): A class situated deeper in the inheritance hierarchy is more likely to be fault-prone 
than a class situated higher up (i.e., closer to the root) in the inheritance hierarchy. The deeper the class in the 
inheritance hierarchy, the less likely it is to consistently extend or specialize its ancestor classes and, therefore, the 
more likely it is to contain a fault. 

H-Ancestors (measures NOA, NOP, NMINH): A class with many ancestors is more likely to be fault-prone than a 
class with few ancestors. The more parents or ancestors a class inherits from, and the more methods a class 
inherits, the larger the context that is needed to know in order to understand what an object of that class represents, 
and therefore the more fault-prone the class is likely to be. 

H-Descendents (measures NOC, NOD, CLD): A class with many descendents is more likely to be fault-prone than 
a class with few descendents. A class with many descendents has a large influence on the system, as all 
descendents rely on it. The class has to serve in many different contexts, and is therefore more likely to be fault-
prone. 

H-OVR (measures NMO, SIX): The more use of method overriding is being made, the more difficult/complex it is 
to understand or test the class, the more fault-prone it will be. Also, heavy use of method overriding indicates 
inappropriate design, which is more fault-prone. 

H-SIZE (measure NMA and the size measures): The larger the class, the more fault-prone it is likely to be as it 
contains more information. 

2.5 Comparison to students’ systems 

The results of the current study will be compared to those obtained in a previous study [6], where we used data 
collected from a development project performed at the University of Maryland (UMD) over a four-month period. 
Eight different groups of developers, composed of undergraduate and postgraduate students, were each asked to 
develop an information system. The systems were implemented in C++, and ranged in size from 4 to 15 KSLOC. 
The eight systems contained a total of 113 non-library classes. 

The independent variables were the same as described in Section 2.3. However, the fault data used in that study 
were of different nature since they came from some acceptance testing activity performed on each system by an 
independent group composed of experienced software professionals. See [6] for more details on the setting of that 
study. 

3 Data Analysis Methodology 
In this section we describe the methodology used to analyze the design measurement data. In Section 3.1, we 
provide an introduction to our primary analysis technique, logistic regression. In Section 3.2, we describe the 
overall analysis procedure and the techniques used. 

3.1 Logistic regression 

Logistic regression is a standard classification technique based on maximum likelihood estimation. In the 
following, we give a short introduction to logistic regression, full details can be found in [20] or [22]. 

A multivariate logistic regression model is based on the following relationship equation (the univariate model is a 
special case of this, where only one independent variable appears): 
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π is the probability that a fault was traced back to a class after a failure during operation, and the Xis are the design 
measures included as independent variables in the model (also called covariates). 

Our dependent variable, π, is a conditional probability: the probability that a fault is found in a class, as a function 
of the class' structural properties. Unlike with other regression techniques (e.g., linear regression, poisson 
regression), the dependent variable is not measured directly. To illustrate this concept, consider the example of a 
(univariate) prediction model for the fault-proneness of classes, as a function of its depth in the inheritance tree 
(inheritance measure DIT). If, for instance, for DIT=3 we obtain π(3)=0.4, we could interpreted this that "there is a 
40% probability that we detect a fault in a class with DIT=3", or "40% of all classes with DIT=3 contain a fault". 

The curve between π and a single Xi – assuming that all other Xjs are constant - takes a flexible S shape which 
ranges between two extreme cases: 

• When Xi is not significant, then the curve approximates a horizontal line, i.e., π does not depend on Xi. 
• When Xi entirely differentiates fault-prone software parts from the ones that are not, then the curve 

approximates a step function. 
Such an S shape is perfectly suitable as long as the relationship between Xis and π is monotonic, an assumption 
consistent with the empirical hypotheses to be tested in this study. Otherwise, higher degree terms have to be 
introduced in the regression equation. 

The coefficients ci are estimated through the maximization of a likelihood function L, built in the usual fashion, 
i.e., as the product of the probabilities of the single observations, which are functions of the covariates (whose 
values are known in the observations) and the coefficients (which are the unknowns). For mathematical 
convenience, l=ln[L], the loglikelihood, is usually the function to be maximized. This procedure assumes that all 
observations are statistically independent. In our context, an observation is the (non) detection of a fault in a C++ 
class. Each (non) detection of a fault is assumed to be an event independent from other fault (non) detections. This 
is justified by the way we obtained our fault data, where, in a given class, each fault instance stems from a distinct 
failure report form. Each data vector in the data set describes an observation and has the following components: an 
event category (fault, no fault) and a set of OO design measures (introduced in Section 2.3). In particular, if more 
than one fault is detected in a given class, each fault detection results in a separate observation in our data set. This 
is a direct consequence of our assumption that fault detections are independent events. Thus, the number of faults 
detected in a class is taken into account when we fit our models. 

We also want to assess the impact of the independent variable on the dependent variable. In logistic regression, the 
regression coefficients Ci cannot be easily interpreted for this purpose. Instead, we use a measure ∆ψ , which is 
based on the notion of the odds ratio [20]. More specifically, the odds ratio ))(1/()()( XXX ππψ −=  
represents the ratio between the probability of having a fault and the probability of not having a fault when the 
value of the measure is X. As an example, if, for a given value X, ψ (X) is 2, then it is twice as likely that the class 
does contain a fault than that it does not contain a fault. The value of ∆ψ  is computed by means of the formula 
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)+(=∆
X

X
ψ
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where σ is the standard deviation of measure X. Therefore, ∆ψ  represents the reduction/increase in the odds ratio 
when the value X increases by one standard deviation. This is designed to provide an intuitive insight into the 
impact of independent variables. However, as we will see in Section 4, some measures display very extreme outliers 
which inflate the standard deviation of those measures. The ∆ψ s then can no longer be reasonably interpreted. 
Therefore, such outliers were excluded for the calculation of the ∆ψ s. 

To assess the statistical significance of each independent variable in the model, a likelihood ratio chi-square test is 
used. Let l = ln[L] be the loglikelihood of the model given by our regression equation, and li be the loglikelihood of 
the model without variable Xi. Assuming the null hypothesis that the true coefficient of Xi is zero, the statistic G=-
2(l- li) follows a chi-square distribution with one degree of freedom (denoted by χ2(l)). We test p=P(χ2(l)>G). If p is 
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larger than some level of significance α (typically, α=0.05), the observed change in the loglikelihood may well be 
due to chance, and Xi is not considered significant. If p<=α, the observed change in the loglikelihood is unlikely to 
be due to chance, and Xi is considered significant. 

The global measure of goodness of fit we will use for such a model is assessed via R2— not to be confused with the 
least-square regression R2— they are built upon very different formulae, even though they both range between 0 
and 1 and are similar from an intuitive perspective. The higher R2, the higher the effect of the model’s explanatory 
variables, the more accurate the model. However, as opposed to the R2 of least-square regression, high R2s are rare 
for logistic regression. For this reason, the reader should not interpret logistic regression R2s using the usual 
heuristics for least-square regression R2s. Logistic regression R2 is defined by the following ratio: 

S

S

LL
LLLL

R
−=2 , where 

LL is the loglikelihood obtained by Maximum Likelihood Estimation of the model described by the regression 
equation, and LLS is the loglikelihood obtained by Maximum Likelihood Estimation of a model with the intercept 
c0 only. By carrying out all the calculations, it can be shown that LLS is given by 
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where m0 (resp., m1) represents the number of observations for which there are no faults (resp., there is a fault). 
Looking at the above formula, LLS /(m0+ m1) may be interpreted as the uncertainty associated with the distribution 
of the dependent variable Y, according to Information Theory concepts. It is the uncertainty left when the variable-
less model is used. Likewise, LL/(m0+ m1) may be interpreted as the uncertainty left when the model with the 
covariates is used. As a consequence, (LLS -LL)/(m0+ m1) may be interpreted as the part of uncertainty that is 
explained by the model. Therefore, the ratio (LLS - LL)/ LLS may be interpreted as the proportion of uncertainty 
explained by the model. 

3.2 Procedure for data analysis 

The procedure used to analyze the data collected for each measure is described in five stages: (i) descriptive 
statistics and outlier analyses, (ii) principal component analysis, (iii) correlation to size, (iv) univariate analysis, 
and (v) multivariate regression analysis (prediction model construction and evaluation). The procedure is aimed at 
making the results of our study repeatable and comparable to future replications across different environments. 

3.2.1 Descriptive statistics and outlier analysis 

The data set consists of 83 classes along with the relevant values for each coupling, cohesion, inheritance, and size 
measure. The distribution (mean, median, and interquartile ranges) and variance (standard deviation) of each 
measure is examined. Low variance measures do not differentiate classes very well and therefore are not likely to 
be useful predictors in our data set. Measures with less than five non-zero data points were not considered for 
subsequent analysis. Analyzing and presenting the distribution of measures is important for comparison of the 
results with replicated studies. It allows researchers to determine if the data collected across studies stem from 
similar populations. If not, this information will likely be helpful to explain different findings across studies. 

Outliers are data points which are located in an empty part of the sample space. Inclusion or exclusion of outliers 
can have a large influence on the analysis results and prediction models. It is important that conclusions drawn are 
not solely dependent on a few outlying observations, otherwise, the resulting prediction models are unstable and 
cannot be reliably used. When comparing results across replicated studies, it is particularly crucial to ensure that 
differences in observed trends are not due to singular, outlying data points. For this reason it is necessary to 
identify outliers, test their influence, and possibly remove them to obtain stable results. We distinguish univariate 
and multivariate outliers: 
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• Univariate outliers: A class that has an outlying value in the distribution of any one of the measures used in the 
study. The influence of the identified data point is tested: an outlier is influential, if the significance of the 
relationship between the measure and fault-proneness depends on the absence or presence of the outlier. Such 
influential outliers are not considered in the univariate analysis results. 

• Multivariate outliers: Our set of n independent variables spans an n-dimensional sample space. To identify 
multivariate outliers in this sample-space, we calculate, for each data point, the Mahalanobis Jackknife distance 
from the sample space centroid. The Mahalanobis Distance is a measure that takes correlations between 
measures into account. Multivariate outliers are data points with a large distance from the sample space 
centroid. Again, a multivariate outlier may be over-influential and therefore removed, if the significance of any 
of the n variables in the model depends on the absence or presence of the outlier. 

More detailed information on outlier analysis can be found in [12]. 

3.2.2 Principal component analysis 

If a group of variables in a data set are strongly correlated, these variables are likely to measure the same 
underlying dimension (i.e., class property) of the object to be measured. Principal component analysis (PCA) is a 
standard technique to identify the underlying, orthogonal dimensions that explain relations between the variables 
in the data set [29]. 

Principal components (PCs) are linear combinations of the standardized variables, i.e., design measures. The sum 
of the square of the weights in each linear combination is equal to one. PCs are calculated as follows. The first PC 
is the linear combination of all standardized variables that explain a maximum amount of variance in the data set. 
The second and subsequent PCs are linear combinations of all standardized variables, where each new PC is 
orthogonal to all previously calculated PCs and captures a maximum variance under these conditions. Usually, 
only a subset of all variables shows large weights and therefore contributes significantly to the variance of each PC. 
To better identify these variables, the loadings of the variables in a given PC can be considered. The loading of a 
variable is its correlation with the PC. The variables with high loadings help identify the dimension the PC is 
capturing but this usually requires some degree of interpretation. 

In order to further ease interpretation of the PCs, we consider the rotated components. This is a technique where 
the PCs are subjected to an orthogonal rotation. As a result, the rotated components show a clearer pattern of 
loadings, where the variables either have a very low or high loading, thus showing either a negligible or a 
significant impact on the PC. There exist several strategies to perform such a rotation. We used the varimax 
rotation, which is the most frequently used strategy in the literature.  

For a set of n measures there are, at most, n orthogonal PCs, which are calculated in decreasing order of variance 
they explain in the data set. Associated with each PC is its eigenvalue, which is a measure of the variance of the 
PC. Usually, only a subset of the PCs is selected for further analysis (interpretation, rotated components, etc.). A 
typical stopping rule that we also use in this study is that only PCs whose eigenvalue is larger than 1.0 are selected. 
See [17] for more details on PCA and rotated components. 

We do not consider the PCs themselves for use as independent variables in the prediction model. Although this is 
often done with least-square regression, in the context of logistic regression, this has shown to result in models 
with a sub-optimal goodness of fit (when compared to models built using the measures directly), and is not current 
practice. In addition, principal components are always specific to the particular data set on which they have been 
computed, and may not be representative of other data sets. A model built using principal components is likely not 
to be applicable across different systems. 

Still, it is interesting to interpret the results from regression analyses (see next sections) in the light of the results 
from PCA, e.g., analyze from which PCs the measures that are found significant stem from. This shows which 
dimensions are the main drivers of fault-proneness, and may help explain why this is the case. 

Regarding replicated studies, it is interesting to see which dimensions are also observable in other systems, and 
find possible explanations for differences in the results. We would expect to see consistent trends across systems for 
the strong PCs which explain a large percentage of the data set variance, and can be readily interpreted. From such 
observations, we can also derive recommendations regarding which measures appear to be redundant and need not 
be collected, without losing a significant amount of design information. 
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3.2.3 Univariate Regression analysis 

Univariate logistic regression is performed for each individual measure (referred to as independent variable in the 
context of regression analysis) against the dependent variable, i.e., no fault/fault detection, in order to determine if 
the measure is a useful predictor of fault-proneness. An introduction to logistic regression was given in Section 3.1. 
Univariate regression analysis is conducted for two purposes:  

1. to test the hypotheses stated in Section 2.4, and 

2. to screen out measures not significantly related to fault-proneness. Only measures that are significant at 
significance level α=0.25 are considered for the subsequent multivariate analysis, as described in Section 
3.2.4. 

3.2.4 Multivariate Regression analysis 

Multivariate logistic regression is performed to build prediction models of the fault-proneness of classes. This 
analysis is conducted to determine how well we can predict the fault-proneness of classes, when the measures are 
used in combination. For the selection of measures to be used in the model, a strategy must be employed that 

1. minimizes the number of independent variables in the model. Using too many independent variables can have 
the effect of increasing the estimated standard error of the model’s prediction, making the model more 
dependent on the data set, i.e., less generalizable. A rule of thumb is to have at least ten data points per 
independent variable in the model. 

2. reduces multicollinearity, i.e., independent variables which are highly correlated. This makes the model more 
interpretable. 

Prediction Model Construction 

This study is exploratory in nature, that is, we do not have a strong theory that tells us which variables should be 
included in the prediction model and which not. In this situation, a stepwise selection process can be used, where 
prediction models are built in a stepwise manner, each time one variable enters or leaves the model. 

The two major stepwise selection processes used for regression model fitting are forward selection and backward 
elimination [20]. The general forward selection procedure starts with a model that includes the intercept only. 
Based on certain statistical criteria, variables are selected one at a time for inclusion in the model, until a stopping 
criterion is fulfilled. Similarly, the general backward elimination procedure starts with a model that includes all 
independent variables. Variables are selected one at a time to be deleted from the model, until a stopping criterion 
is fulfilled. 

Because of the large number of independent variables used in this study, the initial model in a backward selection 
process would contain too many variables and could not be interpreted in a meaningful way. Therefore, we opted 
for the forward selection procedure to build the prediction models2. In each step, all variables not already in the 
model are tested: the most significant variable is selected for inclusion in the model. If this causes a variable 
already in the model to become not significant (at αExit=0.10), it is deleted from the model. The process stops when 
adding the best variable no longer improves the model significantly (at αEnter=0.05). 

The significance levels to enter and exit the model (0.05 and 0.10, respectively) are stricter than those suggested in 
[20]. We made this choice because it is an indirect means to control the number of variables in the final model. A 
less stringent choice (e.g. 0.25 to enter the model as suggested in [20]) resulted in models that violated the rule of 
thumb to have at least ten data points per independent variable. 

Test for multicollinearity 

                                                        
2  We also attempted to use a backward selection process by pre-selecting variables using principal component 
analysis. Following a commonly used procedure, the highest loading variables for each principal component was 
selected and then the backward selection process run on this set of variables.  The results, however, showed the 
goodness of fit of the models thus obtained to be poorer than the models obtained from the forward stepwise 
procedure.  We will therefore stick with the forward procedure in this paper.  
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Multivariate models should be tested for multicollinearity. The presence of multicollinearity makes the 
interpretation of the model difficult, as the impact of individual covariates on the dependent variable can no longer 
be judged independently from other covariates. In severe cases, multicollinearity results in inflated standard errors 
for the estimated coefficients, which renders predicted values of the model unreliable. 

According to [20], tests for multicollinearity used in least-squares regression are also applicable in the context of 
logistic regression. They recommend the test suggested by Belsey et al. [2], which is based on the conditional 
number of the correlation matrix of the covariates in the model. This conditional number can conveniently be 
defined in terms of the eigenvalues of principal components as introduced in Section 3.2.2.  

Let X1,..., Xn be the covariates of our model. We perform a principal component analysis on these variables, and 
set lmax to be the largest eigenvalue, lmin the smallest eigenvalue of the principal components. The conditional 

number is then defined as minmax / ll=λ  A large conditional number (i.e., discrepancy between minimum and 

maximum eigenvalue) indicates the presence of multicollinearity. A series of experiments showed that the degree 
of multicollinearity is harmful, and corrective actions should be taken, when the conditional number exceeds 30 
[2]. 

Prediction model evaluation: goodness of fit 

To evaluate the model’s goodness of fit, we apply the prediction model to the classes of our data set from which we 
derived the model. A class is classified fault-prone, if its predicted probability to contain a fault is higher than a 
certain threshold p0. We select the threshold p0 such that the percentage of classes being classified fault-prone is 
roughly the same as the percentage of classes that actually are fault-prone. We then compare the predicted fault-
proneness of classes to their actual fault-proneness. We use the following measures of the goodness of fit of the 
prediction model: 

• Completeness: 
Assume we use the prediction model to select classes that are classified fault-prone for inspection. Further 
assume that inspections are 100% effective, i.e., all faults in a class are found during inspection. Completeness 
is then defined as the number of faults in classes classified fault-prone, divided by the total number of faults in 
the system. It is a measure of the percentage of faults that would have been found if we used the prediction 
model in the stated manner. Low completeness indicates that many faults are not detected. These faults would 
then slip to subsequent development phases, where they are more expensive to correct. 
Counting the percentage of faults found is more precise than counting the percentage of fault-prone classes 
found. It ensures that detecting a class containing many faults contributes more to completeness than detecting a 
class with only one fault. Of course, faults can be more or less severe (e.g., measured by the effort required to fix 
a fault). It would be desirable to also account for the severity of faults when measuring completeness. As was the 
case with the UMD study, we had no reliable data available concerning the severity of the faults. 

• Correctness: 
We can always increase the completeness of our prediction model by lowering the threshold p0 used to classify 
classes as fault-prone (π>p0). This causes more classes to be classified as fault-prone, thus completeness 
increases. However, the number of classes that are incorrectly being classified as fault-prone also increases. It is 
therefore important to consider the correctness of the prediction model. Correctness is the number of classes 
correctly classified as fault-prone, divided by the total number of classes classified as fault-prone. Low 
correctness means that a high percentage of the classes being classified as fault-prone do not actually contain a 
fault. We want correctness to be high, as inspections of classes that do not contain faults is a waste of resources. 

Increased correctness comes at the cost of lower completeness, and vice versa. The question then is, what is an 
optimal threshold p0 that provides a good tradeoff between correctness and completeness. This depends very much 
on the situation in which the model is to be used, e.g., the cost of performing an inspection, and the cost of a fault 
going undetected during inspection. In the absence of assumptions about such external conditions, it is useful to 
calculate correctness and completeness for all possible thresholds p0, and present the results in a graph. 

A third measure of the goodness of fit is the R2 statistic, as explained in Section 3.1. Unlike completeness, 
correctness, the definition of R2 is specific to regression techniques based on maximum-likelihood estimation.  
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3.2.5 The impact of design size 

The size of designs (e.g., class designs) is a necessary part of any predictive model. This is mostly justified by the 
fact that the size of any software artifact determines, to some extent, many of its external properties such as fault-
proneness or effort. On the one hand, we want our predictive models to account for size. But in many cases, e.g., in 
the case of fault-proneness models, and for practical reasons, we need them to capture more than size effects. A 
model that systematically identifies bigger classes as more fault-prone would a priori be less useful: the predicted 
fault-prone classes are likely to cover a larger part of the system, the model thus could not help to focus inspection 
and testing efforts very well. For the purpose of assessing the usefulness and practicality of all the predictive 
models we obtain, we will compare the increase in potential fault detection rate and the increase in size to be tested 
or inspected. 

In addition, for each measure, we analyze its relationship to the size of the class, as measured based on design 
information. This is to determine empirically whether the measure, even though it is assumed to be a coupling, 
cohesion, or inheritance measure, is essentially measuring size. This is important for several reasons. First, if a 
measure is strongly related to size, this might shed light on its relationship with fault-proneness: larger classes are 
more likely to contain faults. Recall that we are also interested in increasing our understanding of OO code and 
design quality, independently of its size. We select the size measures showing the strongest relationship to fault-
proneness and most of its variance due to size: NMImp, the number of methods implemented in the class (this 
corresponds to the simpler version of the well-known WMC measure [14]). We then calculate Spearman’s Rho 
coefficient between each design measure and size. We chose a non-parametric measure of correlation, given the 
skewed distributions of the design measures that we usually observe.  This analysis is more refined but partially 
redundant with principal component analysis that will show us the measures being part of the same dimension as 
size measures.  

3.3 Comparison to previous study 

In order to build on previous experience and attempt to generalize further our results, we compare the results 
obtained from LALO with those obtained from the systems analyzed in [6] (referred to hereafter as the “UMD 
systems”). Therefore, in the analyses below, we include a systematic comparison of the results with this previous 
study and try to explain differences and similarities. Since the systems studied are very different in nature, this 
should allow us to identify what results are more likely to be generalizable.  One difference between the two studies 
should however be recalled. The UMD systems’ dataset contains fault data collected during acceptance testing 
whereas the LALO fault data comes from operation. Although it is difficult to assess the extent to which this could 
blur the comparison results, it is important that this fact be stated.  

4 Analysis Results 
The analysis results are partitioned into five subsections. In Section 4.1 through Section 4.4, we discuss, 
respectively, the results of the data distribution and outlier analyses, the principal component analysis, correlation 
to size, and the univariate analysis. Section 4.5 then presents and evaluates a number of multivariate prediction 
models built from the design measures. In Section 4.6, we consider threats to the validity of this study. 

4.1 Descriptive Statistics 

4.1.1 Descriptive statistics for coupling measures 

Table 1 presents the descriptive statistics for the coupling measures. Columns “Max”, “75%”, “Med.”, “25%”, 
“Min.”, “Mean” and “Std Dev” state for each measure the maximum value, 75% quartile, median, 25% quartile, 
minimum, mean value, and standard deviation, respectively. 

From this table, we can make the following observations: 

• The measures that count coupling to friend classes (the F***C and IF***C measures) are all zero. That is, there 
are no friendship relationships in the system. 

• There is little inheritance coupling, as can be seen by the low mean and standard deviation of the measures 
which count this type of coupling: IH-ICP, the A***C and D***C measures. Measures ACAIC and DCAEC 
have only one class with a non-zero value. These measures count instances where a class has an attribute whose 
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type is an ancestor class. That is, there is both an “is-a” and a “has-a” relationship between two classes. Of 
course we expect this to occur infrequently (this was also observed in the UMD systems). 

• There is no inheritance-based coupling to library classes. Therefore, ICP and NIH-ICP yield identical values, as 
do MPC and OMMIC. 

• Overall, there is only very little coupling to library classes. 60% of the LALO classes exclusively interact with 
other LALO classes only, without having to rely on library classes at all. 

• The measures OCAEC, OCMEC, and OMMEC counting export coupling to library classes are non-zero for 
some classes. This indicates that some library classes use non-library classes, something one normally would not 
expect to happen. In our case,  the automatically generated classes in the LALO system, which we treat as 
library classes, implement a parser and use some of the 83 non-library classes. 

 Coupling to non-library classes only Coupling to library classes only 
Measure Max 75% Med 25% Min Mean Std Dev Max 75% Med 25% Min Mean Std Dev 
CBO 31 9 5 3 0 7.181 6.659 2 1 0 0 0 0.422 0.587 
CBO' 31 8 4 3 0 6.614 6.648 2 1 0 0 0 0.422 0.587 
RFC1 367 53 32 16 3 46.313 53.41 27 2 0 0 0 2.458 5.61 
RFC8  638 142 57 20 3 100.96 124.76 118 88 5 0 0 31.94 41.10 
MPC 274 14 5 1 0 16.205 37.448 73 2 0 0 0 3.47 10.233 
ICP 676 46 12 2 0 49.374 105.37 201 7 0 0 0 9.446 27.88 
IH-ICP 50 5 2 0 0 4.916 8.857 0 0 0 0 0 0 0 
NIH-ICP 626 33 9 1 0 44.458 101.277 201 7 0 0 0 9.446 27.88 
DAC 8 2 1 0 0 1.193 1.477 0 0 0 0 0 0 0 
DAC' 7 1 1 0 0 1 1.22 0 0 0 0 0 0 0 
IFCAIC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
ACAIC 2 0 0 0 0 0.024 0.22 0 0 0 0 0 0 0 
OCAIC 8 2 1 0 0 1.169 1.48 0 0 0 0 0 0 0 
FCAEC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
DCAEC 2 0 0 0 0 0.024 0.22 0 0 0 0 0 0 0 
OCAEC 16 1 0 0 0 1.169 2.603 6 0 0 0 0 0.084 0.666 
IFCMIC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
ACMIC 8 1 0 0 0 0.807 1.477 0 0 0 0 0 0 0 
OCMIC 205 8 4 2 0 9.386 23.644 2 0 0 0 0 0.217 0.443 
FCMEC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
DCMEC 38 0 0 0 0 0.807 4.432 0 0 0 0 0 0 0 
OCMEC 135 4 1 0 0 9.386 23.247 62 1 0 0 0 1.735 8.412 
IFMMIC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
AMMIC 24 3 1 0 0 2.108 4.024 0 0 0 0 0 0 0 
OMMIC 250 9 4 0 0 14.096 35.343 73 2 0 0 0 3.47 10.233 
FMMEC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
DMMEC 69 0 0 0 0 2.108 8.528 0 0 0 0 0 0 0 
OMMEC 124 15 4 1 0 14.096 23.705 26 0 0 0 0 0.542 2.91 

Table 1: Descriptive Statistics for Coupling Measures 

Comparison to UMD systems 

For the UMD study, we investigated eight independent, smaller systems, whereas in the current study, we have one 
large system. Thus, because the LALO classes are embedded in a larger context, there is overall more coupling 
present in the LALO system. Especially the measures that involve method invocations have higher means and 
standard deviations than in the UMD systems. However, there are two exceptions to this: 

• There is less aggregation coupling in the LALO system (in this paper, by aggregation we mean instances where 
a class has an attribute whose type is another class). In particular, there is no aggregation coupling to library 
classes, which is to be expected for the kinds of libraries used (IO, threading). 
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• Unlike in the UMD systems, there is no friendship coupling in the LALO system. This was considered bad 
practice and was avoided, e.g., by introducing access methods to set and retrieve values of class attributes, 
whenever this was required. 

 
4.1.2 Descriptive statistics for cohesion measures 

Table 3 presents the descriptive statistics for the cohesion measures. We make the following observations: 

• ICH, LCOM1 and LCOM2 have extreme outliers. For the LCOM measures, this is due to the presence of access 
methods. These methods usually only reference one attribute, and therefore increase the number of pairs of 
methods in the class that do not use attributes in common. 

• The low median and 75% quartile of ICH indicate that there are relatively few method invocations within 
classes: only one third of all classes have a non-zero value for ICH. This explains why LCOM3 and LCOM4 
have similar distributions (similar mean and quartiles below 75%, the maximum of LCOM3 is an extreme 
outlier with a large impact on the standard deviation). In addition to counting pairs of methods using attributes 
in common like LCOM3 does, LCOM4 also takes method invocations within a class into account. Because for 
most classes there are no within-class method invocations, LCOM4 produces similar values to LCOM3. This 
was also observed in the UMD systems. 

Measure Max 75% Median 25% Min Mean Std Dev 
LCOM1 5437 79 45 17 0 139.5904 598.25 
LCOM2 4988 46 22 0 0 99.5904 547.74 
LCOM3 56 7 5 3 1 5.867 6.32 
LCOM4 12 6 5 3 1 4.952 2.837 
LCOM5 1.25 0.750 0.620 0.489 0 0.62071 0.257 
Coh 1 0.556 0.438 0.281 0 0.42850 0.231 
Co 0.5 0.234 0.097 0 -1 0.11246 0.201 
LCC 1 0.711 0.524 0.222 0 0.48434 0.300 
TCC 1 0.574 0.333 0.181 0 0.38255 0.254 
ICH 343 3 0 0 0 9.615 42.54 

Table 3: Descriptive Statistics for Cohesion Measures 

Comparison to UMD systems 

Overall, the distributions of the individual measures in terms of their mean and standard deviations are very 
similar to the UMD systems. Unlike the coupling measures, the cohesion measures are concerned with the internal 
structure of each individual class and are not strongly affected by the overall size of the systems. It is interesting to 
see that both studies’ results show normalized cohesion measures (i.e., Coh, Co, LCOM5, LCC, TCC) with mean 
and median values far below 1. In light of the relatively high experience of the LALO developers, the question is 
now whether achieving values near 1 is a realistic expectation for such measures and, consequently, how should we 
interpret them?  

4.1.3 Descriptive statistics for inheritance measures 

Table 5 summarizes the descriptive statistics for all inheritance measures. We make the following observations: 

• The maximum value of NOP is 1, no class has two or more parents, i.e., multiple inheritance was not used. 
Therefore the measures DIT, AID, and NOA produce identical values, and we removed AID and NOA from all 
subsequent analyses. 

• NMA and NMINH show an extreme outlier (104 and 127 respectively). The two classes involved are central to 
the architecture of LALO. The class with NMINH=127 inherits from the class with NMA=104. 

• Overall, little use of inheritance was made. This is observed in most data sets reported ([14], [15], [16]). 
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Measure Max 75% Median 25% Min Mean Std Dev 
DIT 3 1 1 0 0 0.831 0.852 
AID 3 1 1 0 0 0.831 0.852 
CLD 3 0 0 0 0 0.277 0.611 
NOC 9 0 0 0 0 0.590 1.415 
NOP 1 1 1 0 0 0.590 0.495 
NOD 12 0 0 0 0 0.831 2.235 
NOA 3 1 1 0 0 0.831 0.853 
NMO 13 4 0 0 0 2.470 3.586 
NMINH 127 8 3 0 0 6.542 15.99 
NMA 104 15 9 8 1 12.81 12.16 
SIX 1.1818 0.3333 0 0 0 0.166 0.256 

Table 5: Descriptive Statistics for Inheritance Measures 

Comparison to UMD systems 

The distribution of measures are comparable between the two systems, most measures have similar means and 
standard deviations. Notable differences: 

• NOC and NOD do vary more in the LALO systems. 
• Method overriding is much more used in the LALO system. In the UMD study, the average NMO was 0.61, 

which is one fourth of the value of the LALO system. This may be explained by the larger experience of the 
LALO developers with OO and the inheritance mechanism: they are better able to design class inheritance 
hierarchies that exploit the opportunities for polymorphism to a larger degree. 

4.1.4 Descriptive statistics for size Measures 

Table 7 presents the descriptive statistics for size measures. 

Measure Max 75% Median 25% Min Mean Std Dev 
NumPara 233 18 10 7 0 16.60 28.07 
NAImp 16 3 2 1 0 2.578 3.029 
NMImp 108 16 11 9 1 14.61 12.61 
NAInh 27 3 1 0 0 2.337 4.435 
NMInh 127 8 3 0 0 6.542 15.98 

Table 7: Descriptive Statistics for Size Measures 

The descriptive statistics for the size measures do not show any interesting or surprising trends, the extreme 
outliers for measures NMImp and NMInh were already discussed in the inheritance section. 

Comparison to UMD systems 

In terms of the number of methods and number of parameters, the individual classes in UMD were smaller 
(average 12 implemented methods per class, with 11 parameters in UMD; average 16 methods per class with 17 
parameters in LALO). However, the classes of the UMD systems have more attributes (average 5.4, as opposed to 
2.5 in LALO). 

4.2 Principal Component Analysis 

For the PCA, measures that did not vary were discarded. For pairs of measures with identical values, one 
redundant measure was removed. PCA using the remaining measures identified ten PCs which capture 87% of the 
data set variance. Table 9 shows for each rotated component the loadings of the measure, with loadings larger than 
0.7 set in boldface. The eigenvalue, the percentage of the data set variance each PC captures, and the cumulative 
variance percentage are also provided. 

Since each coupling measure was measured twice (once counting coupling to library classes only, once counting 
coupling to non-library classes only), we consider the two versions of each measure to be distinct measures. To 
distinguish them, we denote the version counting coupling to library classes by appending “L“ to its name. For 
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example, MPC_L denotes the measure that counts invocations of methods from library classes, whereas MPC 
denotes the measure that counts invocations of method from non-library classes. 

Based on the analysis of the loadings associated with each measure within each of the rotated components, the PCs 
are interpreted as follows:  

PC1: NumPara, NMImp, DAC, OCAIC; LCOM1, ICH, NMA: Measures NumPara, NMImp, and NMA show the 
highest loadings in this PC and measure the class size in terms of its methods and method parameters. This is our 
interpretation of this PC. LCOM1 is a count of the number of pairs of methods that do not use attributes in 
common; the more methods, the larger the potential number of such pairs, hence a correlation with the number of 
methods is plausible. Likewise, ICH, which counts within-class method invocations, is likely to increase with the 
number of methods. For DAC and OCAIC, which measure import aggregation coupling, the correlation to the 
number of methods is unexpected, and we have found no explanation for this. However, the loadings of these 
measures are somewhat lower than those of NumPara, NMImp, and NMA. 

PC2: DCMEC; DMMEC, CLD, NOC, NOD: DCMEC and DMMEC measure export coupling to descendent 
classes, NOC, NOD, and CLD are counts of the number of children, descendents, and depth of inheritance 
hierarchy below the class. Naturally, the more descendents a class has, the higher the export coupling to these 
descendents is likely to be. We interpret this PC to measure the depth of the inheritance tree below a class. 

PC3: OCMEC and OMMEC: these are measures of export coupling to “other” classes, i.e., classes not related via 
friendship or inheritance. 

PC4: NAInh, RFC1, NMINH: NAInh, and NMINH count the number of inherited attributes and methods, 
respectively, and we interpret this PC to measure the inherited size of the class. RFC1 counts the number of 
methods (including inherited ones) of a class, plus the number of methods invoked by these. Hence, RFC1 is 
expected to be larger for descendent classes.  

PC5: MPC, ICP, NIH-ICP, OMMIC: These are measures of method invocations to non-library classes. 

PC6: ACMIC, DIT, NMO, SIX: This PC is not easy to interpret. The number of overriding methods (NMO), and 
the specialization index (SIX) are concerned with method overriding. Method overriding is more likely to occur in 
classes situated deep in the inheritance hierarchy, as is the type of ancestor import coupling measured by ACMIC. 
As NMO and SIX have the highest loadings, we interpret this PC to measure the amount of method overriding. 

PC7: RFC1_L, MPC_L, ICP_L: These measures count import coupling through method invocations to library 
classes. 

PC8: LCOM5, Coh, Co, LCC, TCC: These are normalized cohesion measures. 

PC9: IH-ICP, AMMIC: Measure method invocation import coupling to ancestor classes. 

PC10: OCMEC_L, OMMEC_L: Measures of export-coupling to library classes. 

 

Comparison to UMD Systems 

Six of the ten PCs in LALO can be matched to PCs with identical interpretation in UMD: PC2, and PC5-PC9. PC3 
and PC10 in LALO, counting export coupling to library- and non-library classes, respectively, have one 
corresponding PC in UMD counting export coupling to both library- and non-library classes. Similarly, the 
measures of PC1 in LALO formed two separate PCs in UMD: class size and import aggregation coupling to non-
library classes. For PC4 (inherited size), no similar PC was observed in UMD. 

For coupling measures, we again see the separation between coupling to library and coupling to non-library 
classes, that is, no PC contains a mixture of the two (in UMD such mixtures occurred in two minor PCs only). 

For cohesion, we again have the separation into normalized and non-normalized measures. However, in LALO, the 
"non-normalized cohesion measures" are more strongly correlated to size, which was not the case in UMD. 

Further observations: 
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• As in UMD, most of the PCs identified are coupling dimensions (5 out of 10), we have one cohesion 
dimension (PC8), two inheritance dimensions, (PC2 and PC6), two size dimensions (PC1 and PC4). This is 
almost identical to UMD, where we had 9 out of 13 coupling dimensions and only one size dimension. 

• The smaller number of coupling dimension identified is explained by the fact that several types of coupling in 
UMD do not occur in LALO, for instance, friendship coupling, inheritance-based or aggregation coupling to 
library classes. 

As in UMD, we again see that measures purporting to measure different structural attributes end up in the same PC 
(inheritance-based coupling and inheritance in PC2 and PC6), size and cohesion and coupling in PC1.
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 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 
Eigenvalue: 10.912 8.229 6.247 4.608 4.075 2.930 2.708 1.833 1.466 1.313 
Percent: 21.396 16.135 12.249 9.035 7.991 5.744 5.310 3.594 2.875 2.575 
CumPer. 21.396 37.531 49.779 58.814 66.805 72.549 77.859 81.453 84.328 86.903 
NumPara 0.856 -0.083 -0.114 0.014 0.254 0.058 0.093 0.126 0.195 0.08 
NMA 0.846 -0.119 0.079 0.065 0.274 0.143 -0.303 0.116 0.058 0.004 
NMImp 0.776 -0.013 0.219 0.067 0.248 -0.281 -0.371 0.072 0.078 0.009 
OCAIC 0.754 0.126 0.281 -0.4 -0.009 0.026 0.026 -0.015 -0.283 -0.132 
ICH 0.75 -0.181 -0.105 0.09 0.173 -0.007 -0.242 -0.087 0.221 0.055 
DAC 0.749 0.128 0.297 -0.392 -0.001 -0.033 0.022 0.007 -0.275 -0.165 
LCOM1 0.737 -0.103 0.094 0.053 0.165 -0.189 -0.535 -0.161 0.113 0.041 
NOC 0.041 -0.891 0.088 0.09 -0.043 0.115 0.033 -0.278 -0.04 -0.001 
DMMEC 0.192 -0.873 0.101 0.027 0.01 0.044 -0.15 -0.079 -0.027 0.131 
DCMEC -0.148 -0.862 0.243 0.012 -0.046 -0.003 0.061 -0.096 -0.053 0.094 
NOD -0.04 -0.857 0.054 0.088 -0.041 0.129 0.016 -0.292 -0.028 -0.042 
CLD 0.047 -0.741 -0.068 0.091 -0.03 0.163 -0.187 -0.336 -0.025 -0.076 
OMMEC 0.143 -0.147 0.828 0.15 0.01 -0.011 -0.041 0 0.022 0.11 
OCMEC 0.107 -0.111 0.75 0.042 0.004 -0.235 -0.109 -0.097 0.123 0.389 
NMINH 0.045 0.048 -0.043 -0.944 -0.008 -0.018 0.039 -0.064 0.053 -0.012 
NAInh 0.014 0.087 -0.105 -0.912 -0.072 -0.024 0.088 -0.051 0.183 0.002 
RFC1 0.235 0.051 0.12 -0.828 0.327 -0.127 -0.087 -0.036 0.213 -0.003 
NIH-ICP 0.183 0.038 0.109 -0.032 0.959 0.002 -0.034 0.052 0.044 0.016 
ICP 0.178 0.047 0.116 -0.071 0.95 -0.009 -0.034 0.048 0.119 0.015 
MPC 0.218 0.029 0.037 -0.104 0.942 0.066 -0.031 0.073 0.019 -0.023 
OMMIC 0.217 0.008 -0.013 -0.064 0.939 0.115 -0.036 0.073 -0.077 -0.017 
SIX -0.037 0.144 0.027 0.075 -0.043 -0.925 -0.018 -0.045 -0.077 -0.017 
NMO 0.044 0.196 0.313 0.017 0.006 -0.863 -0.21 -0.065 0.055 0.011 
ACMIC 0.014 0.159 0.359 0.119 0.078 -0.814 -0.063 0.017 0.193 -0.016 
DIT -0.028 0.174 -0.186 -0.335 -0.183 -0.724 0.139 -0.088 -0.033 -0.002 
MPC_L 0.129 -0.016 0.02 0.029 0.006 -0.02 -0.95 -0.006 0.028 0.067 
ICP_L 0.131 -0.013 0.026 0.037 0.008 -0.027 -0.949 -0.009 0.036 0.07 
RFC1_L 0.03 -0.017 0.108 -0.45 0.027 -0.036 -0.801 0.043 -0.145 0.01 
TCC 0.084 0.174 0.037 0.096 0.095 0.241 -0.042 0.914 -0.006 -0.059 
LCOM5 0.076 -0.216 0.166 -0.022 0.002 0.066 -0.139 -0.896 -0.048 -0.074 
Co 0.19 0.093 0.052 0.035 0.109 0.03 -0.021 0.878 -0.023 -0.021 
Coh -0.151 0.228 -0.186 0.035 -0.026 -0.014 0.177 0.86 0.055 0.066 
LCC 0.261 0.209 0.193 0.024 0.129 0.324 -0.196 0.78 -0.096 -0.131 
IH-ICP -0.028 0.096 0.095 -0.436 0.052 -0.122 -0.005 -0.034 0.824 -0.011 
AMMIC 0.03 0.158 0.376 -0.31 0.141 -0.349 0.031 0.014 0.709 -0.045 
OMMEC_L -0.008 0.084 0.252 0.013 -0.006 -0.044 -0.159 -0.034 -0.019 0.892 
OCMEC_L -0.107 -0.367 0.363 0.01 -0.03 -0.051 -0.021 -0.009 -0.079 0.784 
OCAEC 0.03 0.099 0.658 0.008 0.103 -0.148 -0.063 -0.056 0.18 0.575 
CBO_L -0.071 -0.126 0.555 0.028 -0.028 -0.279 -0.444 -0.01 -0.089 0.254 
DAC' 0.641 0.08 0.152 -0.535 0.065 0.057 0.001 0.093 -0.263 -0.182 
LCOM3 0.234 -0.35 -0.033 0.059 0.022 -0.556 -0.169 -0.556 0.142 0.169 
LCOM4 -0.057 -0.277 0.059 0.082 -0.039 -0.637 0.089 -0.549 0.103 0.161 
RFC8 _L -0.068 -0.213 0.173 -0.286 0.102 -0.597 -0.288 -0.118 0.055 0.135 
OCMIC_L 0.082 -0.138 0.392 0.15 0.046 -0.494 -0.582 -0.115 0.157 0.133 
NAImp 0.626 0.025 0.092 0.047 0.141 0.082 -0.647 -0.041 -0.049 -0.087 
LCOM2 0.613 -0.189 -0.029 -0.015 0.036 -0.124 -0.61 -0.285 -0.026 0.085 
CBO 0.198 -0.458 0.632 -0.16 0.402 -0.137 -0.002 -0.014 0.084 0.074 
CBO' 0.196 -0.47 0.635 -0.13 0.414 -0.073 -0.024 -0.011 0.059 0.069 
NOP -0.031 0.213 -0.072 -0.366 -0.226 -0.649 0.07 -0.088 0.256 0.068 
RFC8  0.1 -0.023 -0.183 -0.69 0.336 -0.056 -0.285 0.01 0.142 0.033 
OCMIC 0.649 0.072 -0.026 -0.185 0.249 0.159 0.184 0.239 -0.141 0.011 

Table 9: Rotated Component 
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4.3 Univariate Logistic Regression Analysis 

4.3.1 Univariate regression analysis for coupling measures 

The results of the univariate analysis are summarized in Table 11. For each measure, the regression coefficient and 
standard error is provided (Columns ”Coeff.“ and ”Std Err“), the R² and ∆ψ  value (as defined in Section 3.1), and 
the statistical significance (p-value), which is the probability that the coefficient is different from zero by chance. 
Measures with little or no variance are not considered in the table. 

Coupling to non-library classes only Coupling to library classes only Measure 
R² Coeff. Std Err ∆ψ  p-value R² Coeff. Std Err ∆ψ  p-value 

CBO 0.3171 0.404 0.084 5.493 <.0001 0.1688 2.108 0.47 3.445 <.0001 
CBO' 0.3421 0.447 0.091 4.439 <.0001 0.1688 2.108 0.47 3.445 <.0001 
RFC1 0.296 0.024 0.007 2.142 0.0005 0.2037 0.535 0.165 2.005 0.0013 
RFC8  0.0678 0.0051 0.0018 1.568 0.0070 0.0801 0.016 0.005 1.645 0.0006 
MPC 0.2159 0.099 0.03 1.73 0.0008 0.2349 0.687 0.231 3.34 0.0029 
ICP .0.3121 0.051 0.012 2.569 0.0001 0.2377 0.257 0.087 3.612 0.0031 
IH-ICP 0.0662 0.080 0.030 1.174 0.0078 All zero 
NIH-ICP 0.3358 0.071 0.017 2.741 <0.0001 0.2377 0.257 0.087 3.612 0.0031 
DAC 0.0308 0.257 0.124 1.461 0.0386 All zero 
DAC' 0.0312 0.304 0.147 1.448 0.0391 All zero 
OCAIC 0.0281 0.241 0.121 1.429 0.0467 All zero 
OCAEC 0.0925 0.588 0.242 1.462 0.0152 All zero 
ACMIC 0.0376 0.339 0.152 1.226 0.0261 All zero 
OCMIC 0.0618 0.1015 0.036 2.009 0.0052 0.1689 3.179 1.019 4.089 0.0018 
DCMEC 0.0021 0.0345 0.0661 1.044 0.6019 All zero 
OCMEC 0.1320 0.093 0.035 1.365 0.0086 0.1355 1.82 0.458 2.395 <.0001 
AMMIC 0.0758 0.19 0.076 1.395 0.0121 All zero 
OMMIC 0.1938 0.096 0.03 1.562 0.0014 0.2349 0.687 0.231 3.34 0.0029 
DMMEC 0.0192 0.138 0.092 1.204 0.1349 All zero 
OMMEC 0.1034 0.051 0.017 1.542 0.0025 0.0732 0.826 0.377 1.454 0.0282 

Table 11: Univariate Analysis Results for Coupling Measures 

As we can see in Table 11, most of the measures have a significant relationship to fault-proneness (at α=0.05). The 
exceptions are DCMEC and DMMEC of PC2, which count export coupling to descendent classes. 

For all significant measures, the regression coefficients are positive. This confirms hypotheses H-IC and H-EC 
stated in Section 2.4 that classes with higher import or export coupling are more likely to be fault-prone. 

The impact of export coupling on fault-proneness is weaker than that of import coupling: the export coupling 
measures mostly have lower coefficients and ∆ψ s than their import coupling counterparts. 

The CBO measures are the only measures that count both import and export coupling. Their relationship to fault-
proneness is particularly strong (high coefficients and ∆ψ s). 

Comparison to UMD systems 

Similar to the results obtained with the UMD systems, all import coupling measures with sufficient variation were 
found to be significant predictors of fault-proneness.  

However, in the UMD systems, none of the export coupling measures were found to be significantly related to 
fault-proneness in the expected direction. In the LALO system, most of the export coupling measures that do vary 
also are indicators of fault-proneness. Maybe, because of the weaker impact of export coupling, and because there 
was overall less coupling in the UMD systems, thus resulting in less variation, we failed to find a statistically 
significant relationship to fault-proneness in those systems. 
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4.3.2 Univariate regression analysis for cohesion measures 

The results from univariate analysis with cohesion measures are summarized in Table 13. 

Measure R² Coeff. Std Err ∆ψ  p-value 
LCOM1 0.2078 0.02 0.006 3.942 0.0004 
LCOM2 0.0949 0.011 0.005 1.613 0.0249 
LCOM3 0.0499 0.135 0.063 1.499 0.0316 
LCOM4 Not significant 0.7159 
LCOM5 Not significant 0.8061 
Coh Not significant 0.3786 
Co Not significant 0.2619 
LCC 0.0357 1.712 0.696 1.672 0.0140 
TCC Not significant 0.3726 
ICH 0.3000 0.700 0.214 3.525 0.0010 
Table 13: Univariate Analysis Results for Cohesion Measures 

Five of the ten cohesion measures are significant at α=0.05: 

• The significant measures LCOM1, LCOM2, and LCOM3 show positive correlation coefficients. This indicates 
that the higher the values of these measures, the more fault-prone the class is likely to be. This is consistent with 
our Hypothesis H-Coh that low cohesion is bad design.  

• As was discussed in [8], the mathematical properties of ICH make it unlikely to be measuring cohesion. ICH 
possesses properties of a complexity measure. With this information, the positive coefficient of ICH is 
reasonable: the higher ICH (and thus class complexity), the more fault-prone the class. 

• For LCC, the positive coefficient indicates that fault-proneness increases with class cohesion, which is counter-
intuitive. As we will see below, LCC is also positively correlated to size, which may explain this unexpected 
relationship to fault-proneness. 

All other measures (LCOM4, LCOM5, Coh, Co, TCC) are not significant predictors. This includes all normalized 
cohesion measures, except LCC. We consider normalization a necessary property of a cohesion measure [9], but it 
appears not to be effective from a prediction point of view. 

Comparison to UMD systems 

From the cohesion measures found significant in the LALO system, LCOM3 and ICH were also significant in the 
UMD systems. Coh was significant in the UMD systems, but not in the LALO system. All other measures, 
including LCOM1, LCOM2, and LCC, were not significant in the UMD systems. 

4.3.3 Univariate regression analysis for inheritance measures 

The results from univariate analysis for the inheritance measures are summarized in Table 15. We make the 
following observations: 

• Only three measures are significant indicators of fault-proneness: DIT, NMO, and NMA. 
• The negative coefficient of DIT indicates that fault-proneness decreases with the depth of the class. That is, 

classes located deeper in the inheritance hierarchy are less fault-prone. An explanation for this is that, in the 
LALO system, classes situated deeper in the inheritance hierarchy provide only implementations for a few 
specialized methods, and are therefore less likely to contain faults than classes at the root. This stems from a 
deliberate strategy, from the LALO development team, to place as much functionality as possible near the root 
of the inheritance hierarchies.  

• For NMO and NMA, the positive coefficient indicates that fault-proneness increases with the number of 
overriding or added methods. This is consistent with our hypotheses H-OVR and H-NMA.  
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Measure R² Coeff. Std Err ∆ψ  p-value 
 DIT  0.0414 -0.656 0.245 0.572 0.0074 
 CLD  0.0085 0.366 0.314 1.251 0.2431 
 NOC Not significant 0.7064 
 NOP Not significant 0.5587 
 NOD Not significant 0.8280 
 NMO  0.0479 0.152 0.057 1.724 0.0082 
 NMINH Not significant 0.3254 
 NMA  0.1075 0.112 0.037 3.925 0.0021 
 SIX Not significant 0.7766 

Table 15: Univariate Analysis Results for Inheritance Measures 

Comparison to UMD systems 

Measures NMO and NMA appear to be consistently good indicators of fault-proneness in both systems. 

In the UMD-Systems, all inheritance measures were significant indicators of fault-proneness. Besides NMO and 
NMA, only DIT is a significant predictor in LALO. However, its relationship to fault-proneness is in the opposite 
direction. In the UMD systems, classes deeper down in the inheritance hierarchy were likely to be more fault-
prone, as stated in hypothesis H-Depth. The student developers of the UMD systems had no previous experience 
with object-orientation, most of the LALO developers have worked on OO systems before. This could indicate that 
the added cognitive complexity of using inheritance may cause critical problems to beginners (such as the UMD 
systems’ student developers) but is not an issue for an experienced team using a well-defined inheritance strategy, 
such as the LALO developers. 

A related result is that NOC was found significant in the UMD systems, but not in the LALO system, even though 
the measure has higher variance in the LALO system.  

To summarize, the inheritance measures do not appear to be stable quality indicators of OO design, but seem to 
rather indicate how well the development team can deal with inheritance. In conjunction with fault data, the 
inheritance measures help to determine if the way inheritance is used in the system causes the developers problems. 
On their own, however, the existent inheritance measures are not able to distinguish, in an objective manner,  
proper use of inheritance from improper use. 

4.3.4 Univariate regression analysis for size measures 

Table 17 shows the univariate analysis results for the size measures. 

Measure R² Coeff. Std Err ∆ψ  p-value 
NumPara 0.1191 .0916 .0265 2.562 0.001 
NAImp 0.1306 .3845 .1112 2.412 0.001 
NMImp 0.1487 .1335 .0347 2.750 0.000 
NAInh Not significant 0.352 
NMInh Not significant 0.325 
Table 17: Univariate Analysis Results for Size Measures 

Except for the NAInh and NMInh counting inherited methods and attributes, all size measures have a significant 
relationship to fault-proneness, NMImp showing the strongest impact. 

In UMD, all size measures were significant, including NAInh and NMInh, which we explain by the lack of 
experience of the students with the inheritance mechanism. 

4.4 Correlation to size 

In this section we analyze the correlation of the design measures to the size of the class. We measure the size of the 
class design as the number of methods that are implemented in the class. The correlation of each design measure 
with size is expressed in terms of its Spearman Rho coefficient with size, and the corresponding p-value. 

4.4.1 Correlation to size for coupling measures 

The correlations of the coupling measures to class size are shown in Table 19.  
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 Coupling to non-library 
classes only 

Coupling to library 
classes only 

Measure Rho p-value Rho p-value 
CBO 0.3937 0.0002 0.3152 0.0037 
CBO' 0.3939 0.0002 0.3152 0.0037 
RFC1 0.5198 <.0001 0.3101 0.0043 
RFC8  0.3162 0.0036 0.1982 0.0724 
MPC 0.3969 0.0002 0.3569 0.0009 
ICP 0.4237 <0.0001 0.3601 0.0008 
IH-ICP 0.0901 0.4178 All zero 
NIH-ICP 0.4645 <.0001 0.3601 0.0008 
DAC 0.5208 <.0001 All zero 
DAC' 0.5083 <.0001 All zero 
OCAIC 0.4866 <.0001 All zero 
OCAEC 0.1331 0.2303 All zero 
ACMIC 0.2826 0.0096 All zero 
OCMIC 0.5167 <.0001 0.4201 <.0001 
DCMEC -0.1664 0.1326 All zero 
OCMEC 0.1984 0.0722 0.3455 0.0014 
AMMIC 0.0996 0.3701 All zero 
OMMIC 0.3591 0.0009 0.3569 0.0009 
DMMEC 0.0498 0.6548 All zero 
OMMEC 0.4688 <.0001 0.2343 0.0330 

Table 19: Correlation of Coupling Measures to Size 

The non-library versions of measures DAC, DAC’, OCAIC, and OCMIC (all in PC4), and RFC1 ,  have the 
strongest relationship to size. For OCMIC this may be explained because the more methods a class has, the more 
method parameters there are, the higher OCMIC is likely to be (which counts the number of method parameters 
that have an “other” class as their type). RFC1 includes a count of the number of methods; therefore a correlation to 
size is expected here. However, the Rho coefficients for all these measures are only barely above 0.5, i.e., the 
relationship to size is not very strong. For all other coupling measures, significant Rho coefficients are below 0.5, 
that is, there is at most a moderate correlation to size for these measures, if any. Some of these correlations, 
however, may partly explain some of the relationship to fault-proneness reported below in Section 4.3. When 
building multivariate models, in Section 4.5, we will verify whether coupling measures add predictive power and 
show practical usefulness. 

Comparison to UMD systems 

Common to the LALO and UMD systems is that overall a statistically significant correlation to size is present, but 
it is weak. 

4.4.2 Correlation to size for cohesion measures 

Table 21 shows, for each cohesion measure, the Spearman's Rho coefficient with size (the number of methods 
implemented in the class).  

Measure Rho p-value 
LCOM1 0.8069 <.0001 
LCOM2 0.3087 0.0045 
LCOM3 0.2416 0.0277 
LCOM4 0.1036 0.3515 
LCOM5 0.0870 0.4373 
Coh -0.1259 0.2569 
Co 0.3491 0.0012 
LCC 0.4093 0.0001 
TCC 0.2013 0.0680 
ICH 0.5431 <.0001 

Table 21: Correlation of Cohesion Measures to Size 
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LCOM1 is very strongly correlated to size, which may explain its significant relationship to fault-proneness. The 
correlation to size is due to the presence of access methods in some classes. As discussed in [8], access methods 
typically reference one class attribute only. Thus, a large number of pairs of methods that use no attributes in 
common can be formed with these access methods. The more methods in a class (i.e., the larger the class), the 
larger the potential number of such pairs. 

We saw that the presence of access methods has strong impact on some of the measures in PCA, univariate 
analysis and correlation to size. Several authors suggested modifications to the definitions of these measures, to 
better account for the presence of access methods (see [8] for a summary of these discussions). However, for a 
completely automated static analysis of the systems, there must be a way to automatically recognize access methods 
(e.g., a consistently applied naming scheme that uniquely identifies access methods by “set_” and “get_” name 
prefixes, which must not be used for any other methods). If there is no way to safely identify access methods, as 
this is the case in LALO, these modified measures are difficult to implement and use in practice.  

ICH and LCC have a moderate positive correlation to size. For ICH, which is a count of method invocations within 
classes, this is understandable: the more methods a class has, the more method invocations are likely to occur 
within the class (even though this could not be observed in the UMD systems). For LCC, however, we have no 
explanation for the correlation to size. Most of the other measures have a significant, but weak correlation to size. 

Comparison to UMD systems 

In the UMD systems, we also found that many measures had a significant, but weak correlation to size (especially 
Co, TCC, and LCC). ICH displays the strongest correlation among all cohesion measures in both the UMD and 
LALO systems. Such a relationship is explained, as discussed above, by the way the measure is defined. Such 
correlations just confirm the argument that ICH cannot probably be considered as a valid cohesion measure. 

4.4.3 Correlation to size for inheritance measures 

Table 23 shows Spearman’s Rho correlation coefficients with size for all inheritance measures. Only NMA, the 
number of methods added to a class, is strongly correlated to size (which is to be expected). All other measures are 
at most weakly correlated to size. This is identical to what was observed in the UMD systems. 

Measure Rho p-value 
DIT 0.0005 0.9966 
AID 0.0005 0.9966 
CLD -0.0346 0.7563 
NOC -0.0434 0.6972 
NOP 0.0200 0.8575 
NOD -0.0410 0.7130 
NOA 0.0005 0.9966 
NMO 0.3748 0.0005 
NMINH -0.1488 0.1793 
NMA 0.7740 <.0001 
SIX 0.2445 0.0259 

Table 23: Correlation of Inheritance Measures with Size 

4.5 Multivariate Regression analysis 

In this section we investigate a number of multivariate prediction models, built from different subsets of the 
measures we have analyzed so far (Section 4.5.1). The main goal of these models is to build accurate prediction 
models for class fault-proneness by using all the design measures available together. We first build a model based 
on size measures only. We then allow coupling, cohesion, and inheritance measures to enter the model and 
compare its goodness of fit with the size-only model. It is important to note that coupling and cohesion measures 
are usually available at a later stage in the design process. We evaluate the accuracy of the most plausible 
prediction model we found using a 10-cross-validation process (Section 4.5.2), and discuss possible applications of 
such a model in Section 4.5.3. 
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4.5.1 Comparing Multivariate Models 

In this section, we compare models built from size measures only, from coupling, cohesion, and inheritance design 
measures only, and one allowing all measures (design coupling, cohesion, inheritance, and size) to enter the 
model. With these models, we seek to find answers to the following questions: 

• Are coupling, cohesion, and inheritance design measures fault-proneness predictors that are complementary to 
design size measures 

• How much more accurate is a model including the more difficult to collect coupling, cohesion, and inheritance 
measures? If it is not significantly better, then the additional effort of calculating these more expensive measures 
instead of some easily collected size measures would not be justified. 

Size Model 

Because the number of size measures considered is small, a backward stepwise selection process was used to build 
a prediction model based solely on size measures: 

Measure Coefficient Std. Err. p-value 
NumPara .0577 .0267 0.031 
NAImp .2655 .1154 0.021 
Intercept -.3016 .3847 0.433 
Table 25: Model I based on design size measures only 

We will refer to this model as “Model I”. Because there are strong correlations present among the size measures we 
considered, only two measures ended up in this model. Thus, the goodness of fit of the model cannot be expected to 
be very high: the loglikelihood of the model is -74.05, and R2=0.1639. The conditional number for this model is 

61.10.55331.446672 ≈ , which does not indicate any problems. 

We applied this model to the 83 classes of the LALO system in order to compare the predicted and actual fault-
proneness of the classes. A class was classified ‘predicted fault-prone’, if its predicted probability to contain a fault 
is higher than a certain threshold, p0. We can then calculate correctness and completeness of this classification, as 
described in Section 3.2.4. The graph in Figure 3 shows the model's correctness and completeness (vertical axis), 
as a function of the classification threshold p0, which ranges from 0 to 1 on the horizontal axis. The graph 
additionally shows the number of classes that are classified fault-prone, as a percentage of the total number of 
classes (i.e., classes inspected). 
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Figure 3: Correctness/Completeness Graph for Model I 

A good tradeoff between correctness and completeness is achieved at a cutoff value of 0.73, where completeness 
and correctness values are both about 68%. At that threshold, 32 of the 83 classes (39%) are selected for 
inspection, of which 22 classes are actually faulty and contain 89 out of 131 faults found. 

We will now compare the results of Model I with the comparable model in the UMD study. We put in the first 
column the covariates that were selected in LALO and UMD, respectively. We then provide an interpretation of 
what dimensions these measures capture based, when possible, on principal component analysis. It is to be 
expected that covariates will vary across models, when built in different environments. But we want to determine 
whether some common dimensions seem to be important, regardless of the environment. Though this just 
represents two studies, they are sufficiently different (see Section 3.3) to make any commonality worth noticing. 
From Table 26, we can see that design size measures related to methods and their parameters seem to play a major 
role in predicting fault-proneness. A related study looking at the cost of development [10] finds similar 
conclusions.  

LALO UMD Interpretation of PC 
NumPara NumPara Size in terms of methods and their parameters 
NAImp  No clear PC, data members locally defined (not inherited) 
 NM No clear PC, number of methods locally defined and inherited 
 NMpub No clear PC, Number of public methods 

Table 26: Comparison of UMD and LALO studies for Model I 

The goodness of fit achieved by the UMD model for the UMD systems was 60% correctness and 67% 
completeness (LALO: 68% correctness, 68% completeness). Thus, we have about the same level of completeness 
as the LALO model, and a slightly lower correctness.  

Model built from coupling, cohesion, and inheritance measures 

Next, we build a model allowing all coupling, cohesion, and inheritance measures significant at α=0.25 to enter 
the model, following a forward selection process as described in Section 3.2.4. Here it is: 
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Measure Coeff. Std. Err p-value 
CBO’ .379 .174 0.030 
ICP_L .272 .111 0.014 
ICH  .466 .241 0.053 
NIH-ICP  .069 .0262 0.009 
OCAIC -1.91 .658 0.004 
OCMIC .136 .0554 0.014 
Intercept -2.56 .791 0.001 

Table 28: Model II – based on coupling, cohesion, and inheritance measures 

This model (Model II) consists of six measures: five import coupling measures, and the “cohesion” measure ICH, 
which, as discussed, rather has properties of a class complexity measure. None of the other cohesion and 
inheritance measures are included, reflecting the results found in univariate analysis that many of these measures 
are not significant indicators of fault-proneness in the LALO system. Of the six model covariates, two covariates 
could not be clearly attributed to any PC. The remaining four covariates cover the three PCs PC1, PC5, and PC7. 
There are two measures from PC1 present (ICH and OCAIC), and they are somewhat correlated. This may explain 
the negative sign of OCAIC, which was positive in the univariate analysis. Changes in coefficient magnitude or 
sign are common in multivariate regression analysis and can be due to multicollinearity and adjustment effects 

between covariates. However, the conditional number of the model is 38.50.1182733.423092 ≈ , still well below 
the critical threshold of 30. 

The model has a high goodness of fit (loglikelihood = -27.94, R2=0.69). Figure 5 shows the correctness and 
completeness graphs for model II. 
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Figure 5: Correctness/Completeness Graph for Model II 

Model II performs very well: correctness and completeness values above 90% are achieved for thresholds in the 
range 0.45 to 0.85. For instance, at p0=0.7, of the 42 classes predicted fault-prone, 38 actually are fault-prone (90% 
correctness), which contain 122 faults (93% completeness, there are 131 faults in total). The high goodness of fit 
indicates that the design measures capture structural dimensions with a strong relationship to fault-proneness, 
which go beyond the size of classes. A model based on structural class properties can outperform models based on 
class size measures alone, which justifies the extra effort to collect these measures. 
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Like for Model I, we now compare the models of the LALO and UMD studies. We can see from Table 29 that both 
studies, despite their differences, showed that import coupling, through method invocations, from library and non-
library classes have a significant role on fault-proneness. This is therefore likely to be a structural property that 
should be considered as a potential fault-proneness factor when building such models. Inheritance properties 
appear as significant covariates in the UMD studies and not in the LALO data, as expected and discussed in 
Section 4.3.3.  

LALO UMD Interpretation of PC 
CBO’  No clear PC 
ICP_L NIHICP_L Import coupling through method invocations from library classes 
ICH   Class size in terms of methods and their parameters 
NIH-ICP  RFC8  Import coupling through method invocations to non-library 

classes 
OCAIC  Class size in terms of methods and their parameters 
OCMIC  No clear PC - coupling 
 NOP No clear PC  
 RFC1_L No clear  PC  
 NMI No clear  PC  
 FMMEC Export coupling to friend classes 
 CLD Depth of inheritance hierarchy 

Table 29: Comparison of UMD and LALO studies for Model II 

The goodness of fit of the UMD model for the UMD systems was 81% correctness and 94% completeness. Like for 
the LALO study, the inclusion of coupling and inheritance measures clearly improved the model fit compared to 
the model based on design size measures only. 

Model built from coupling, cohesion, inheritance, and design size measures 

Finally, we will consider a model built using the forward selection process, allowing all coupling, cohesion, 
inheritance, and design size measures (significant at 0.25) to enter the model: 

Measure Coefficient Std Err. p-value 
CBO’ .683 .176 0.000 
ICP_L .379 .124 0.002 
OCAIC -3.91 1.12 0.000 
NumPara .190 .0567 0.001 
NAImp 1.61 .652 0.014 
ICH .484 .240 0.045 
Intercept -5.41 1.47 0.000 

Table 31: Model III – allowing all measures to enter the model 

This model (Model III) consists of six covariates: three import coupling measures, two size measures, and ICH. 
Compared to Model II, the two coupling measures OCMIC and NIH-ICP were replaced by two size measures: 
NumPara and NAImp (which happen to be exactly the size measures that were selected in Model I).  

The results above could indicate that some of the coupling measures in Model II were included because of their 
moderate relationship to size, which is related to fault-proneness. When size measures are allowed to enter the 
model, those coupling measures are then not selected as significant covariates anymore. 

The loglikelihood of this model is = -24.99, and the R2 = 0.72, i.e., slightly higher than the model without size 

measures. The conditional number of 59.70.0577493.23936 ≈ still does not indicate a problematic amount of 
multicollinearity. 
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Figure 7: Correctness/Completeness Graph for Model III 

The correctness and completeness curves for Model III are very similar to that of Model II. At the threshold of 
0.73, 44 of the 83 classes are selected for inspection, of which 40 are actually faulty (91% correctness), and we 
achieve 95% completeness (124 out of 141 faults). The accuracy of the corresponding model in the UMD study was 
90% correctness and 70% completeness. Overall, the results we obtained in the LALO study confirm the trends 
observed in the UMD study: The two main fault-proneness factors are size and import coupling and very high 
levels of correctness and completeness can be achieved. 

4.5.2 Model evaluation 

Based on our discussions in Section 3.2.5, and therefore for practical reasons regarding the usefulness of our 
predictive model, we will further investigate Model II. Recall that this model is not based on size measures and 
shows a similar accuracy to Model III. However, its accuracy is somewhat optimistic since the prediction model 
was applied to the same data set it was derived from, i.e., we were assessing the goodness of fit of the model. To 
get an impression of how well the model performs when applied to different data sets, i.e., its prediction accuracy, 
we performed a 10-cross validation [31] of model II. Then more realistic values for completeness and correctness 
can be devised.  

For the 10-cross validation, the 83 data points were randomly split into ten partitions of roughly equal size (seven 
partitions of 8 data points each, three partitions of 9 data points). For each partition, we re-fitted the model using 
all data points not included in the partition, and then applied the model to the data points in the partition. We thus 
again obtain for all 83 classes a predicted probability of their fault-proneness. Figure 8 shows the resulting 
correctness and completeness graphs. 
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Figure 8: Correctness/Completeness Graph for Model II in 10-cross validation 

The correctness and completeness graphs have not changed much from Figure 5. The difference lies mostly with 
the lower correctness curve for thresholds larger than 0.85, i.e., outside the range of practically useful values of p0. 
For thresholds between 0.5 and 0.75, the model achieves correctness and completeness values above 90%, where 
about 50% of the classes would be selected for inspections. Hence, the accuracy of the model in cross-validation is 
not much lower than the model goodness-of-fit determined in Section 4.5.1. This indicates a high stability of the 
model. 

In the UMD study, the best model achieved 92% completeness and 78% correctness when performing cross-
validation. Like for the LALO study, the loss in accuracy was small when compared to the model goodness-of-fit. 

4.5.3 Model applications 

They are many ways in which the prediction models above can be used. However, before one can do so, it is 
important to demonstrate that, in a given application domain and environment, such models can be stable. Thus, 
from project to project, the models can be applied with a reasonable level of confidence. Such stability can only be 
obtained if enough project data have been collected to provide stable distributions on the design measures’ ranges. 
As discussed above, many of the differences across regression results between the UMD systems and the LALO 
system came from significant differences in data distributions, some of the design measures being more or less 
variable in one data set or the other. However, despite the sharp differences with respect to almost every project 
factor, e.g., application domain, experience, it is interesting to note that some strong commonalties have been 
clearly identified.  

One important application is to use the fault-proneness models to help focus inspections or testing. Taking the 
example of inspection planning during the software development process, we would like to be able to make a trade-
off between the resources spent on inspections on the one hand, and the effectiveness of inspections on the other 
hand. To optimize this trade-off, we can use a graph such as the one in Figure 10 to determine how many percent 
of the faults in the system we can expect to find by inspecting a certain percentage of the system code, and which 
classes should be inspected. On the X-axis, we plotted the 83 system classes, sorted in decreasing order of their 
predicted fault-proneness (the predicted probabilities were taken from the 10-cross validation described above). 
The lower curve is the cumulative size of the classes, in percent (measured in terms of the number of methods in a 
class). At X=30 the value of the curve is 50%, which means that the 30 classes with highest predicted fault-
proneness contain 50% of the methods of the system. The upper curve is the cumulative number of actual faults in 
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the classes, in percent. At X=30, this curve is at Y≈75%, which means the first 30 classes contain 75% of the 
actual faults. 

As an example of an application of this graph, assume we have resources available to inspect 40% of all methods. 
From Figure 10 we can tell that the first 12 classes with highest predicted fault-proneness roughly contain 40% of 
all methods. If we select these classes for inspection, then we can expect to find a maximum of about 57% of all 
faults in them. The graph also tells us that by increasing the resources by 5 points to inspect 45% of all methods, 
the maximum percentage of faults we can find grows to about 67%. 

A practical problem with the application of the graph in Figure 10 is that the upper curve, the cumulative 
percentage of actual faults, is a priori unknown. However, if the shape of the upper curve proves to be stable across 
projects within a development environment, the graph could be used as a reference when planning inspections. 
Initial results indicate that the shape of the graph may indeed be similar in different projects. In the UMD study, 
the analogous graph for that data set had a very similar form to the one presented here, a result of the fact that the 
models in the UMD study and the present study have a similar predictive power. But in general, whether the shape 
of the upper curve is stable across projects in a given environment needs to be verified individually for each 
environment. 

In Figure 10, the upper curve (percent of actual faults) shows a steeper slope than the lower curve (percent of 
system size), before reaching a plateau. The lower curve shows an approximately linear growth, except that the 
slope for the first ten classes with highest predicted fault-proneness is steeper than for the remaining classes (which 
means that these ten classes have an above-average size). But overall, the discrepancy between the upper and lower 
curve indicates that our model does not simply assign higher fault-proneness to larger classes, but that the design 
measures capture an additional effect beyond size that has an impact on the fault-proneness of classes. This 
confirms the results obtained from multivariate analysis which showed that the design measures can help model an 
effect on fault-proneness which is complementary to the one of class size.  

Last, as another example of application, once one knows the design properties that matter with respect to OO 
software quality in a given organization and application domain, then such measurement can be used as quality 
benchmark to assess and compare products. For example, such experiences are reported in [28] where the code of 
acquired products is systematically measured to identify systems or subsystems that strongly depart from previously 
established measurement benchmarks. Such benchmarks can be built based on existing operational software, which 
has shown to be of good quality. New software can then be analyzed by comparing, for example, import coupling 
class distributions with the established benchmark. Any system part that would show a strong departure from the 
benchmark distribution could, for example, be further inspected to investigate the cause of the deviation. If no 
acceptable justification can be found then the acquisition manager may decide to require some corrective actions 
before the final delivery or for future releases of the software. This is particularly important when systems will be 
maintained over a long period of time and new versions produced on a regular basis.  
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Figure 10: Application of the prediction model 

4.6 Threats to Validity 

We distinguish between three types of threats to validity for an empirical study: 

• Construct validity: The degree to which the independent and dependent variables accurately measure the 
concepts they purport to measure.  

• Internal validity: The degree to which conclusions can be drawn about the causal effect of the independent 
variables on the dependent variables.  

• External validity: The degree to which the results of the research can be generalized to the population under 
study and other research settings. 

We now apply these criteria to assess the results described above. 

4.6.1 Construct validity 

The construct validity of the dependent variable has been demonstrated in Section 2.1. We still have to address the 
question to which degree the coupling, cohesion, and inheritance measures used in this study measure the concepts 
they purport to measures. In [7] and [8], the coupling and cohesion measures were theoretically validated against 
properties for coupling and cohesion measures proposed in [9]. These properties are one of the more recent 
proposals to characterize coupling and cohesion in a reasonably intuitive but rigorous manner. The properties are 
considered necessary but not sufficient, as a measure that fulfills all properties is not guaranteed to make sense or 
be useful. 



ISERN-98-29 – Version 3 31 

Of the coupling measures, the following measures fulfill all coupling properties: MPC, the ICP measures, and the 
measures of the suite by Briand et al. [5]. Of the remaining measures, some measures do not have a null value (the 
RFC measures, DAC and DAC’), some are not additive when two unconnected classes are merged (CBO, CBO’, 
the RFC measures, DAC’). 

Of the cohesion measures, only Coh, TCC and LCC fulfill all cohesion properties. The other measures are not 
normalized (LCOM1-LCOM4, ICH), or not properly normalized as they make assumptions which may not be 
fulfilled for all classes (LCOM5, Co). In addition, LCOM2 is not monotonic, and, as already discussed, ICH is 
additive when unconnected classes are merged. 

For the inheritance measures, the concepts they purport to measure are not clear. No empirical relation systems for 
these measures have been proposed; doing so would be desirable but it is beyond the scope of this paper. 

4.6.2 Internal validity 

The analysis performed here is correlational in nature. We have demonstrated that several of the measures 
investigated had a statistically and practically significant relationship with fault proneness during operation. Such 
statistical relationships do not demonstrate per se a causal relationship. They only provide empirical evidence of it. 
Only controlled experiments, where the measures would be varied in a controlled manner and all other factors 
would be held constant, could really demonstrate causality. However, such a controlled experiment would be 
difficult to run since varying coupling, cohesion, and inheritance in a system, while preserving its functionality, is 
difficult in practice. Some attempts to do so are reported in [3][4]. On the other hand, it is difficult to imagine what 
could be alternative explanations for our results besides a relationship between coupling, inheritance depth, and the 
cognitive complexity of classes. 

4.6.3 External validity 

The present study is a case study, therefore, we have the usual threats to the external validity: The models we built 
are validated for the LALO system and development environment only. However, LALO is a midsize system 
developed by experienced, professional developers and is therefore somewhat representative of some of the OO 
development in industry.  

5 Conclusions 
Based on the comparison of the results from the two studies performed so far, we provide a number of 
recommendations. If one intends to build quality models of OO designs, coupling will very likely be an important 
structural dimension to consider. More specifically, a strong emphasis should be put on method invocation, import 
coupling since it has shown to be a strong, stable indicator of fault proneness. We also recommend that the 
following aspects be measured separately since they capture distinct dimensions in our data sets: import versus 
export coupling, coupling to library classes versus application classes, method invocation versus aggregation 
coupling. As far as cohesion is concerned and measured today, it is very likely not a very good fault-proneness 
indicator. This stems mainly from the current difficulty to define clearly the concept and measure it. One 
illustration of this problem is that two distinct dimensions are captured by existing cohesion measures: normalized 
versus non-normalized cohesion measures. As opposed to the various coupling dimensions, these do not look like 
components of a vector characterizing class cohesion, but rather as two fundamentally different ways of looking at 
cohesion. Which one is actually measuring the concept of cohesion, if any? Similarly, inheritance measures appear 
not to be consistent indicators of class fault-proneness. Their significance as indicators strongly depends on the 
experience of the system developers and the inheritance strategy in use on the project. The combined use of 
inheritance measures and fault data to assess the use of inheritance in a project/organization is an important topic 
of further research. 

As discussed, one important application of OO design measures is to build quality benchmarks to assess OO 
software products that are newly developed or under maintenance, e.g., in the context of large scale software 
acquisition and outsourcing [28]. Ideally, the measures used for this purpose should be consistent indicators of 
software design problems, and their relationships to external quality attributes, e.g., fault-proneness, should not 
strongly depend on the characteristics of the environment where the software was developed. We therefore 
conclude that, in the current stage of knowledge, measures of import coupling appear to be particularly well suited 
to develop simple and practical quality benchmarks.  
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Since import coupling appears to be a consistent driver for fault-proneness, one might conclude that a system built 
of only one – big – class, displaying no import coupling whatsoever, should have to be not fault-prone at all. Like 
in all empirical work, the relationships we established here are valid only for a certain population, which is usually 
unknown. In our case, we would vaguely characterize this population as ‘reasonably object-oriented, mid-sized 
systems’. A system consisting of only one class obviously cannot be called object-oriented. Therefore, we would not 
expect our prediction models to be valid for such systems. In addition, it should be recalled that import coupling is 
only one of many drivers of fault-proneness. Other product properties such as size, and also process and resource 
related issues like experience of people affect fault-proneness.   

When using design measures to build predictive models of fault-prone classes, we have consistently obtained, 
across two studies, high levels of classification accuracy (i.e., around 90% correctness and completeness). This 
suggests that design measurement-based models may be very effective instruments for quality evaluation and 
control of OO systems by aggregating fault-proneness predictions for classes. However, the overall results of our 
studies also tell us that the validity of fault-proneness models may be very context-sensitive. In a given 
environment, their stability has to be assessed and analyzed across systems so that conditions (e.g., application 
domain) under which models are stable can be identified. Although some of the patterns and relationships 
presented above seem stable across very different study settings and systems, the replication of such studies is 
necessary in order to build over time a credible body of empirical knowledge on which to base the quality 
assessment of OO designs and systems.  

In our future work we will also investigate alternative modeling techniques aimed at predicting counts of defects in 
classes (as opposed to the predicted probability of fault detection in logistic regression) and thereby facilitate the 
use of design measurement-based prediction models. Techniques such as Poisson or negative-binomial regression 
analysis [27] should be investigated, depending on the defect distributions at hand.  
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Appendix 
Table 32 to Table 35 describe the coupling, cohesion, and inheritance measures used in this study. We list the 
acronym used for each measure, informal definitions of the measures, and literature references where the measures 
originally have been proposed. The informal natural language definitions of the measures should give the reader a 
quick insight into the measures. However, such definitions tend to be ambiguous. Formal definitions of the 
measures using a uniform and unambiguous formalism are provided in [7][8], where we also perform a systematic 
comparison of these measures, and analyze their mathematical properties. 
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Name Definition Source 
CBO  Coupling between object classes. According to the definition of this measure, a class is 

coupled to another, if methods of one class use methods or attributes of the other, or vice 
versa. CBO is then defined as the number of other classes to which a class is coupled. This 
includes inheritance-based coupling (coupling between classes related via inheritance). 

[14] 

CBO’ Same as CBO, except that inheritance-based coupling is not counted. [13] 
RFC8   Response set for class. The response set of a class consists of the set M of methods of the 

class, and the set of methods directly or indirectly invoked by methods in M. In other words, 
the response set is the set of methods that can potentially be executed in response to a 
message received by an object of that class. RFC is the number of methods in the response set 
of the class. 

[13] 

RFC1 Same as RFC8 , except that methods indirectly invoked by methods in M are not included in 
the response set. 

[14] 

MPC  Message passing coupling. The number of method invocations in a class. [23] 
DAC  Data abstraction coupling. The number of attributes in a class that have another class as their 

type. 
[23] 

DAC’ The number of different classes that are used as types of attributes in a class. [23] 
ICP  Information-flow-based coupling. The number of method invocations in a class, weighted by 

the number of parameters of the invoked methods. 
[26] 

IH-ICP  As ICP, but counts invocations of methods of ancestors of classes (i.e., inheritance-based 
coupling) only. 

[26] 

NIH-ICP As ICP, but counts invocations to classes not related through inheritance. [26] 
IFCAIC 
ACAIC 
OCAIC 
FCAEC 
DCAEC 
OCAEC 
IFCMIC 
ACMIC 
OCMIC 
FCMEC 
DCMEC 
OCMEC 
IFMMIC 
AMMIC 
OMMIC 
FMMEC 
DMMEC 
OMMEC 

These coupling measures are counts of interactions between classes. The measures 
distinguish the relationship between classes (friendship, inheritance, none), different types of 
interactions, and the locus of impact of the interaction. 
The acronyms for the measures indicates what interactions are counted: 
• The first or first two letters indicate the relationship (A: coupling to ancestor classes, D: 

Descendents, F: Friend classes, IF: Inverse Friends (classes that declare a given class c 
as their friend), O: Others, i.e., none of the other relationships). 

• The next two letters indicate the type of interaction: 
• CA: There is a Class-Attribute interaction between classes c and d, if c has an 

attribute of type d. 
• CM: There is a Class-Method interaction between classes c and d, if class c has a 

method with a parameter of type class d. 
• MM: There is a Method-Method interaction between classes c and d, if c invokes a 

method of d, or if a method of class d is passed as parameter (function pointer) to a 
method of class c. 

• The last two letters indicate the locus of impact: 
• IC: Import coupling, the measure counts for a class c all interactions where c is 

using another class. 
• EC: Export coupling: count interactions where class d is the used class. 

[5] 

Table 32: Coupling Measures 
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Name Definition Src. 
LCOM1 Lack of cohesion in methods. The number of pairs of methods in the class using no attribute 

in common. 
[13] 

LCOM2 LCOM2 is the number of pairs of methods in the class using no attributes in common, minus 
the number of pairs of methods that do. If this difference is negative, however, LCOM2 is set 
to zero. 

[14] 

LCOM3 Consider an undirected graph G, where the vertices are the methods of a class, and there is an 
edge between two vertices if the corresponding methods use at least an attribute in common. 
LCOM3 is defined as the number of connected components of G. 

[21] 

LCOM4 Like LCOM3, where graph G additionally has an edge between vertices representing methods 
m and n, if m invokes n or vice versa. 

[21]  

Co Connectivity. Let V be the number of vertices of graph G from measure LCOM4, and E the 
number of its edges. Then ))2)(1/(())1((2 −−−−= VVVECo .  

[21] 

LCOM5 Consider a set of methods {Mi} (i=1,...,m) accessing a set of attributes {Aj} (j=1,...,a). Let 
µ(Aj) be the number of methods which reference attribute Aj. Then 

)1/()))(((15
1

mmA
a

LCOM
a

j j −−= ∑ =
µ . 

[18] 

Coh A variation on LCOM5: )/())((
1

amACoh
a

j j ⋅= ∑ =
µ  [8] 

TCC Tight class cohesion. Besides methods using attributes directly (by referencing them), this 
measure considers attributes indirectly used by a method. Method m uses attribute a indirectly, 
if m directly or indirectly invokes a method which directly uses attribute a. Two methods are 
called connected, if they directly or indirectly use common attributes. TCC is defined as the 
percentage of pairs of public methods of the class which are connected, i.e., pairs of methods 
which directly or indirectly use common attributes.  

[11] 

LCC  Loose class cohesion. Same as TCC, except that this measure also considers pairs of indirectly 
connected methods. If there are methods m1,..., mn, such that mi and mi+1 are connected for 
i=1,...,n-1, then m1 and mn are indirectly connected. Measure LCC is the percentage of pairs 
of public methods of the class which are directly or indirectly connected. 

[11] 

ICH  Information-flow-based cohesion. ICH for a method is defined as the number of invocations of 
other methods of the same class, weighted by the number of parameters of the invoked method 
(cf. coupling measure ICP above). The ICH of a class is the sum of the ICH values of its 
methods. 

[26] 

Table 19: Cohesion Measures 
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Name Definition Source 
DIT (depth of inheritance tree) The DIT of a class is the length of the longest path from 

the class to the root in the inheritance hierarchy. 
[13] 

AID (average inheritance depth of 
a class) 

AID of a class without any ancestors is zero. 
For all other classes, AID of a class is the average AID of 
its parent classes, increased by one. 

[18] 

CLD (class-to-leaf depth) CLD of a class is the maximum number of levels in the 
hierarchy that are below the class. 

[32] 

NOC (number of children) The number of classes that directly inherit from a given 
class. 

[13], [14] 

NOP (number of parents) The number of classes that a given class directly inherits 
from. 

[24], [25] 

NOD (number of descendents) The number of classes that directly or indirectly inherit 
from a class (i.e., its children, ‘grand-children’, and so 
on) 

[24], [32] 

NOA (number of ancestors) The number of classes that a given class directly or 
indirectly inherits from. 

[32] 

NMO (number of methods 
overridden) 

The number of methods in a class that override a method 
inherited from an ancestor class. 

[25] 

NMINH (number of methods 
inherited) 

The number of methods in a class that the class inherits 
from its ancestors and does not override. 

[25] 

NMA (number of methods added) The number of new methods in a class, not inherited, not 
overriding. 

[25] 

SIX (specialization index) SIX is NMO * DIT / (NMO+NMA+NMINH) [25] 
Table 35: Inheritance Measures 

In order to compare how these measure relate to size we also consider a number of size measures defined in Table 
21. These measurements are frequently used in publications and available tools, so no definite source or author can 
be given. 

Name Definition 

NMIMP The number of methods implemented in a class (non-inherited or overriding methods) 

NMINH The number of inherited methods in a class, not overridden 

NAIMP The number of attributes in a class (excluding inherited ones). Includes attributes of 
basic types such as strings, integers. 

NAINH The number of inherited attributes in a class 

NUMPAR  Number of parameters. The sum of the number of parameters of the methods 
implemented in a class. 

Table 21: Size measures 
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