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Abstract

The first goal of this paper is to empirically explore the relationships between existing
object-oriented coupling, cohesion, and inheritance measures and the probability of fault
detection in system classes during testing. In other words, we wish to better understand
the relationship between existing design measurement in OO systems and the quality of
the software developed. The second goal is to propose an investigation and analysis
strategy to make these kind of studies more repeatable and comparable, a problem
which is pervasive in the literature on quality measurement. Results show that many of
the measures capture similar dimensions in the data set, thus reflecting the fact that
many of them are based on similar principles and hypotheses. However, it is shown that
by using a subset of measures, accurate models can be built to predict which classes
contain most of the existing faults. When predicting fault-prone classes, the best model
shows a percentage of correct classifications higher than 80% and finds more than 90%
of faulty classes. Besides the size of classes, the frequency of method invocations and
the depth of inheritance hierarchies seem to be the main driving factors of fault prone-
ness. 

Keywords: coupling, cohesion, inheritance, object-oriented, metrics, measurement,
empirical validation

1.0  Introduction
Many measures have been proposed in the literature to capture the structural quality of object-oriented (OO)
code and design (Chidamber and Kemerer, 1991; Chidamber and Kemerer, 1994; Li and Henry, 1993; Lee
et al., 1995; Briand et al., 1997b; Henderson-Sellers, 1996; Hitz and Montazeri, 1995; Bieman and Kang,
1995; Lake and Cook, 1994; Lorenz and Kidd, 1994; Tegarden et al., 1992). Such measures are aimed at
providing ways of assessing the quality of software, for example, in the context of large scale software ac-
quisition (Mayrand and Coallier, 1996). Such an assessment of design quality is objective, and the measure-
ment can be automated. Once the necessary measurement instruments are in place, the assessment of
even large software systems can be performed quickly, at a low cost, with little human involvement. But how
do we know what measures actually capture important quality aspects? Despite numerous theories about
what constitutes good OO design, only empirical studies of actual systems’ structure and quality can provide
tangible answers. Unfortunately, only a few studies have so far investigated the actual impact of these mea-
sures on quality attributes such as fault-proneness (Basili et al., 1996; Briand et al., 1997b; Cartwright and
Shepperd, 1999), productivity or effort (Chidamber et al., 1998), or the amount of maintenance modifications
(Li and Henry, 1993).

In this paper, we empirically investigate most of the measures proposed in the literature to date that capture
structural aspects of OO designs. As far as we know, this is the first time such a comprehensive set of mea-
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sures are investigated together. Based on data collected in an experiment in a university setting, we attempt
to answer the following questions:

• Are existing OO design measures capturing different dimensions and structural aspects? If not, what are
the underlying structural dimensions they actually capture? 

• How are the measures related to the fault-proneness of classes? Which ones strongly affect fault-prone-
ness?

• How accurate are the existing measures in predicting faulty classes? To what extent can they be used to
drive code and design inspections? 

Analyzing the structural dimensions covered by the design measures will shed some light on the amount of
redundancy that is present among existing measures, and will help us to better interpret what individual mea-
sures are really capturing. By relating the measures to fault-proneness, we can identify the important drivers
of fault-proneness, which are candidates to be used as quality benchmarks. Finally, we evaluate the accu-
racy of prediction models in the context of a realistic usage scenario, to demonstrate the potential of such
models, and how they can be applied in practice. 

Our answers to these questions are based on one data set only. Our study should be replicated in order to
obtain generalizable results. In order to facilitate such replications, we propose here a precise, complete, and
repeatable analysis procedure, which, when followed in a replicated study, will enable clear comparisons to
be made across studies.

The results of this paper show that the number of dimensions actually measured is much lower than the num-
ber of measures themselves, despite their apparent differences. Some measures, in particular coupling and
inheritance ones, are shown to be significantly related to the probability of detecting a fault in a class during
testing. When combined, a subset of the measures enables the construction of a very accurate model to pre-
dict which classes most of the faults will lie in. Based on these results, it seems reasonable to claim that such
a model could help focus testing and inspections resources on fault-prone parts of the design and code in a
cost effective manner. For such a result to be achieved, it is important to note that organizations should col-
lect enough data on their own software products to obtain representative distributions on which to perform
the data analysis.

The paper is organized as follows: Section 2.0 describes the goals of the empirical study we are conducting,
the hypotheses associated with the study, and the data collected. Section 3.0 describes the methodology
used to analyze the data and build predictive models. The results of this analysis are then presented in
Section 4.0. We draw our conclusions in Section 5.0. 

2.0  The Empirical Study Design
In this section, we provide some background on the systems that are used in this study, the data collected,
the dependent and independent variables, and the hypotheses we wish to investigate.

2.1  Description of the Empirical Study

The systems used for this study were developed by students participating in an upper division undergradu-
ate/graduate level course offered by the Department of Computer Science at the University of Maryland. The
objective of this class was to teach OO software analysis and design. The students were not required to have
previous experience or training in the application domain or OO methods. All students had some experience
with C or C++ programming and relational databases and therefore had the basic skills necessary for such
a study. The systems were developed over a course of four months.

The students were grouped into eight teams of three students each. Each team was asked to develop a me-
dium-sized management information system that supports the rental/return process of a hypothetical video
rental business, and maintains customer and video databases. Such an application domain had the advan-
tage of being easily comprehensible and, therefore, we could make sure that system requirements could be
easily interpreted by students regardless of their educational background. 

The development process was performed according to a sequential software engineering life-cycle model
derived from the Waterfall model. This model includes the following phases: analysis, design, implementa-
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tion, testing, and repair. At the end of each phase, a document was delivered: Analysis document, design
document, code, error report, and finally, modified code, respectively. Requirement specifications and de-
sign documents were checked to verify that they matched the system requirements. Errors found in these
first two phases were reported to the students. This maximized the chances that the implementation began
with a correct OO analysis/design. Acceptance testing was performed by an independent group. During the
repair phase, the students were asked to correct their system based on the errors found by the independent
test group.

OMT, an OO Analysis/Design method, was used during the analysis and design phases (Rumbaugh et al.,
1991). The C++ programming language, the GNU software development environment, and OSF/MOTIF
were used during the implementation. Sparc Sun stations running on a UNIX operation system were used
as the implementation platform. Although this is constantly changing, the development environment and
technology we used are representative of what was used in industry and academia at that time. Our results
are thus more likely to be generalizable to other development environments (external validity). 

The following libraries were provided to the students:

1. MotifApp. This public domain library provides a set of C++ classes on top of OSF/MOTIF for manipula-
tion of windows, dialogues, menus, etc. The MotifApp library provides a way to use the OSF/Motif wid-
gets in an OO programming/design style. 

2. GNU library. This public domain library is provided in the GNU C++ programming environment. It con-
tains functions for manipulation of string, files, lists, etc.

3. C++ database library. This library provides a C++ implementation of multi-indexed B-Trees. 

We also provided a specific domain application library in order to make our study more representative of in-
dustrial conditions. This library implemented the graphical user interface for insertion/removal of customers
and was implemented in such a way that the main resources of the OSF/Motif widgets and MotifApp library
were used. Therefore, this library contained a small part of the implementation required for the development
of the rental system.

No special training was provided for the students to teach them how to use these libraries. However, a tutorial
describing how to implement OSF/Motif applications was given to the students. In addition, a C++ program-
mer, familiar with OSF/Motif applications, was available to answer questions about the use of OSF/Motif wid-
gets and the libraries. A hundred small programs exemplifying how to use OSF/Motif widgets were also pro-
vided. In addition, the complete documentation and, where available, the source code of the libraries were
provided. Finally, it is important to note the students were not required to use the libraries and, depending
on the particular design they adopted, different choices were expected. 

The testing phase was accomplished by an independent group composed of experienced software profes-
sionals. This group tested all systems according to similar test plans and using functional testing techniques,
spending eight hours testing each system. 

The following relevant data items were collected: 

1. the source code of the C++ programs delivered at the end of the implementation phase,

2. data about faults found by the independent testers during the testing phase.

The “M-System”, a measurement tool based on GEN++ (Devanbu, 1992), was developed at IESE to extract
the values for the object-oriented design measures directly from the source code of the programs delivered
at the end of the implementation phase. To collect item 2, fault report and component origination forms were
used.

2.2  Dependent Variable

The goal of this study is to empirically investigate the relationships between object-oriented design measures
and fault-proneness at the class level. We therefore need to select a suitable and practical measure of fault-
proneness as the dependent variable for our study.

In this paper, fault-proneness is defined as the probability of detecting a fault in a class. As described in a
section below, we chose a classification technique, called logistic regression, which is based on predicting
event probabilities. In our instance, an event is a detection of a fault in a class during acceptance testing.
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The probability of fault detection is described as a function of the structural properties of the classes. A rig-
orous definition, and examples to illustrate this concept, are given in Section 3.2, where we introduce logistic
regression.

Clearly, other choices for the dependent variable could have been used (e.g., fault density) but, to a large
extent, such a definition is driven by the choice of the modeling technique used for data analysis. Further-
more, the alternative choice of fault density as a dependent variable has its own problems. In (Rosenberg,
1998), it is shown that, even when there is no causal relationship between size and number of faults, a neg-
ative correlation between size and fault density can be found. This is, however, a pure mathematical artifact
which makes any analysis of the impact of size on fault-proneness difficult. 

Our dependent variable will be estimated based on fault data collected during testing and using maximum
likelihood estimation in the context of logistic regression. Clearly, fault data may not be complete. But con-
sidering the systems used here are small, relatively simple, and thoroughly tested, we believe a very large
proportion of faults has been detected. If this should not be the case, our analysis results should not show
strong, consistent trends. 

2.3  Independent Variables

The measures of coupling, cohesion and inheritance identified in a literature survey on object-oriented de-
sign measures (Briand et al., 1999; Briand et al., 1998a) are the independent variables used in this study.
More specifically, we focus on measures defined at the class level, although there also exist measures de-
fined for attributes, methods, and (sub)systems. Measures at the method and attribute level could not be val-
idated, as the fault data we have only assigns faults to specific classes, but not to individual methods or at-
tributes. Measures at the system level could not be validated because such measures provide only one data
point per system. We have too few systems to be able to perform a valid statistical analysis for such mea-
sures.

We consider a total of 28 coupling measures, 10 cohesion measures, and 11 inheritance measures. In order
to compare the relationship of these measures to size, we also investigate a small selection of size mea-
sures. The definitions of all measures used are summarized in Appendix A. 

The eight systems under study consist of a total of 180 classes. Of these 180 classes, 67 were reused ver-
batim or with minor modifications (less than 25% of the code changed) from class libraries, the other 113
classes were developed from scratch or reused with extensive modifications (more than 25% of the code
changed). The latter 113 classes will be referred to as ‘application classes’ or ‘non-library classes’ whereas
the other 67 classes will collectively be called ‘library classes’. We collected the values for each of the mea-
sures presented above for the 113 application classes only.

At this stage, it is pertinent to consider the influence of library classes. Application classes can be coupled
to library classes either through inheritance or by using some of their functionality. For coupling measures,
a decision regarding whether or not to count coupling to library classes will have an impact on the computed
measures’ values. We hypothesized that there would be a different effect on our dependent variable, if, for
example, an application class is coupled to another application class rather than a library class, i.e., we hy-
pothesized that a class is more likely to be fault prone if it is coupled to an application class than if it is coupled
to a library class (although this may be dependent on the experience of the developer with the class library
being used, or how well the library is documented). Consequently, the results for each coupling measure
were calculated for each application class twice: counting coupling to other application classes only, and
counting coupling to library classes only. As an example, consider Figure 1, where classes are represented
as rectangles, the lines between classes denote coupling connections, and the classes are grouped accord-
ing to library- and application classes. Class c is coupled to two other application classes and one library
class. The measure CBO will yield 2 when counting coupling to application classes only, and 1 when count-
ing coupling to library classes only. In this way, all coupling measures were calculated twice for the applica-
tion classes, and analysis was then performed on both variants of the measures. The coupling measures are
not calculated for the library classes. 

Similarly, we could have distinguished ‘inheritance between application classes’ and ‘inheritance between
application and library classes’ for the inheritance measures. However, as we will see later on, there are only
very few inheritance relationships in the latter category. Measures focused on these inheritance relationships
between application- and library classes have therefore little variance. Therefore the distinction was not
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made for inheritance measurement, the measures count inheritance relationships from application classes
to both library classes and other application classes.

2.4  Hypotheses

In this study, we want to test the following hypotheses, which relate the design measures to fault-proneness. 

H-IC (for all import coupling measures): A class with high import coupling is more likely to be fault-prone that
a class with low import coupling. A class with high import coupling relies on many externally provided servic-
es. Understanding such a class requires knowledge of all these services. The more external services a class
relies on, the larger the likelihood to misunderstand or misuse some of these services. Therefore, the class
is more difficult to understand and develop, and thus likely to be more fault-prone.

H-EC (for export coupling measures): A class with high export coupling is more likely to be fault-prone than
a class with low export coupling. A class with high export coupling has a large influence on the system: many
other classes rely on it. Failures occurring in a system are therefore more likely to be traced back to a fault
in the class, i.e., the class is more fault-prone.

H-COH (for cohesion measures): A class with low cohesion is more likely to be fault-prone than a class with
high cohesion. Low cohesion indicates inappropriate design, which is likely to be more fault-prone.

H-Depth (measures DIT, AID): A class situated deeper in the inheritance hierarchy is more likely to be fault-
prone than a class situated higher up (i.e., closer to the root) in the inheritance hierarchy. The deeper the
class in the inheritance hierarchy, the less likely it is to consistently extend or specialize its ancestor classes
and, therefore, the more likely it is to contain a fault.

H-Ancestors (measures NOA, NOP, NMI): A class with many ancestors is more likely to be fault-prone than
a class with few ancestors. The more parents or ancestors a class inherits from, and the more methods a
class inherits, the larger the context that is needed to know in order to understand what an object of that class
represents, and therefore the more fault-prone the class is likely to be.

H-Descendents (measures NOC, NOD, CLD): A class with many descendents is more likely to be fault-prone
than a class with few descendents. A class with many descendents has a large influence on the system, as
all descendents rely on it. The class has to serve in many different contexts, and is therefore more likely to
be fault-prone.

H-OVR (measures NMO, SIX): The more use of method overriding is being made, the more difficult/complex
it is to understand or test the class, the more fault-prone it will be. Also, heavy use of method overriding in-
dicates inappropriate design, which is more fault-prone.

H-SIZE (measure NMA and the size measures): The larger the class, the more fault-prone it is likely to be
as it contains more information.

3.0  Data Analysis Methodology
In this section we describe the methodology used to analyze the coupling, cohesion, and inheritance mea-
sure data collected for the 113 system classes. In Section 3.1 we provide a description of the overall analysis

FIGURE 1. Coupling to library and application classes
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procedure and the techniques used. In Section 3.2 we provide a detailed description of our primary analysis
technique, logistic regression.

3.1  Procedure for Data Analysis

The procedure used to analyze the data collected for each measure is described in four stages: (i) data dis-
tribution and outlier analyses, (ii) principal component analysis, (iii) prediction model construction, and (iv)
correlation to size. This procedure is aimed at making the results of our study repeatable and comparable
for future replications across different environments.

3.1.1  Data distribution and outlier analyses

Analysis of data distributions and outliers are performed through the following two steps:

1. The distribution and variance of each measure is examined. Measure that vary little do not differentiate
classes very well and therefore are not likely to be useful predictors in our data set. Only measures with
more than five non-zero data points were considered for all subsequent analyses.
Analyzing and presenting the distribution of measures is important for comparison of the results with
replicated studies. It allows researchers to determine if the data collected across studies stem from sim-
ilar populations. If not, this information will likely be helpful to explain different findings across studies.

2. Identification of outliers. Outliers are data points which are located in an empty part of the sample space.
Inclusion or exclusion of outliers can have a large influence on the analysis results and prediction mod-
els (influential outliers). It is important that conclusions drawn are not solely dependent on a few outlying
observations. Otherwise, the resulting prediction models are unstable and cannot be reliably used.
Again, when comparing results across replicated studies, it is particularly crucial to ensure that differ-
ences in observed trends are not due to singular, outlying data points. Thus, it is important to identify
outliers, test their influence, explain them, and possibly remove them. We distinguish univariate and
multivariate outliers:

• Univariate outliers: A class that has an outlying value in the distribution of any one of the measures
used in the study. The influence of the identified data point is tested: an outlier is influential, if the
significance of the relationship between the measure and fault-proneness depends on the absence
or presence of the outlier. Such influential outliers were removed for the results from univariate anal-
ysis.

• Multivariate outliers: Our set of n independent variables spans an n-dimensional sample space. To
identify multivariate outliers in this sample-space, we calculate for each data point the Mahalanobis
Jackknife Distance from the sample space centroid. The Mahalanobis Distance is a distance meas-
ure which takes correlations between measures into account. Multivariate outliers are data points
with a large distance from the centroid. Again, a multivariate outlier may be over-influential and
therefore be removed, if the significance of any of the variables in the model depends on the absence
or presence of the outlier. 

More detailed information on outlier analysis can be found in (Barnett and Price, 1995).

3.1.2  Principal component analysis

If a group of variables in a data set are strongly correlated, these variables are likely to measure the same
underlying dimension (i.e., class property) of the object to be measured. Principal component analysis (PCA)
is a standard technique to identify the underlying, orthogonal dimensions that explain relations between the
variables in a data set. 

Principal components (PCs) are linear combinations of the standardized independent variables. The sum of
the squares of the coefficients of the standardized variables in one linear combination is equal to one. PCs
are calculated as follows. The first PC is the linear combination of all standardized variables which explain a
maximum amount of variance in the data set. The second and subsequent PCs are linear combinations of
all standardized variables, where each new PC is orthogonal to all previously calculated PCs and captures
a maximum variance under these conditions. Usually, only a subset of all variables have large coefficients -
also called the loading of the variable - and therefore contribute significantly to the variance of each PC. The
variables with high loadings help identify the dimension the PC is capturing but this usually requires some
degree of interpretation.
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In order to identify these variables, and interpret the PCs, we consider the rotated components. This is a
technique where the PCs are subjected to an orthogonal rotation. As a result, the rotated components show
a clearer pattern of loadings, where the variables either have a very low or high loading, thus showing either
a negligible or a significant impact on the PC. There exist several strategies to perform such a rotation. We
used the varimax rotation, which is the most frequently used strategy in the literature.

For a set of n measures there are, at most, n orthogonal PCs, which are calculated in decreasing order of
variance they explain in the data set. Associated with each PC is its eigenvalue, which is a measure of the
variance of the PC. Usually, only a subset of the PCs is selected for further analysis (interpretation, rotated
components, etc.). A typical stopping rule that we also use in this study is that only PCs whose eigenvalue
is larger than 1.0 are selected. See (Dunteman, 1989) for more details on PCA and rotated components.

We do not consider the PCs for use as independent variables in the prediction model. Although this is often
done with least-square regression, in the context of logistic regression, this has shown to result in models
with a sub-optimal goodness of fit (when compared to models built using the measures directly), and is not
current practice. In addition, principal components are always specific to the particular data set on which they
have been computed, and may not be representative of other data sets. A model built using principal com-
ponents is likely not to be applicable across different systems.

Still, it is interesting to interpret the results from regression analyses (see next sections) in the light of the
results from PCA, e.g., analyze from which PCs the measures that are found significant stem from. This
shows which dimensions are the main drivers of fault-proneness and may help explain why this is the case.

Regarding replications of this study, it would be interesting to see which dimensions would also be observ-
able in other systems, and find possible explanations for differences in the results. We would expect to see
consistent trends across systems for the strong PCs which explain a large percentage of the data set vari-
ance, and can be readily interpreted. 

3.1.3  Prediction model construction

Constructing the prediction model requires three steps: (i) univariate logistic regression, (ii) multivariate lo-
gistic regression, and (iii) model evaluation (i.e., goodness of fit). We describe these steps below.

(i) Univariate logistic regression is performed, for each individual measure (independent variable), against
the dependent variable to determine if the measure is statistically related, in the expected direction, to fault-
proneness. This analysis is conducted to test the hypotheses in Section 2.4.

(ii) Multivariate logistic regression is performed to build a prediction model for the fault-proneness of classes.
This analysis is conducted to determine how well we can predict the fault-proneness of classes, when the
measures are used in combination. For the selection of measures to be used in the model, a strategy must
be employed that

• minimizes the number of independent variables in the model. Using too many independent variables can
have the effect of increasing the estimated standard error of the model’s prediction, making the model
more dependent on the data set, i.e., less generalizable. A rule of thumb is to have at least ten data points
per independent variable in the model.

• reduces multicollinearity, i.e., independent variables which are highly correlated. This makes the model
more interpretable.

This study is exploratory in nature, that is, we do not have a strong theory that tells us which variables should
be included in the prediction model. In this situation, a stepwise selection process can be used, where pre-
diction models are built in a stepwise manner, at each step one variable entering or leaving the model.

The two major stepwise selection processes used in logistic regression are forward selection and backward
elimination (Hosmer and Lemeshow, 1989). The general forward selection procedure starts with a model that
includes the intercept only. Based on certain statistical criteria, variables are selected one at a time for inclu-
sion in the model, until a stopping criteria is fulfilled. Similarly, the general backward elimination procedure
starts with a model that includes all independent variables. Variables are selected one at a time to be deleted
from the model, until a stopping criteria is fulfilled.
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Because of the large number of independent variables used in this study, the initial model based on a back-
ward selection process could not be fitted. Therefore, we opted for the forward selection procedure to build

the prediction models1. In each step, all variables not already in the model are tested: the most significant
variable is selected for inclusion in the model. If this causes a variable already in the model to become not
significant (at αExit=0.10), it is deleted from the model. The process stops when adding the best variable no
longer improves the model significantly (at αEnter=0.05). The significance of a variable is tested by a loglike-
lihood ratio test, which will be explained in Section 3.2.

The significance levels to enter and exit the model (0.05 and 0.10, respectively) are stricter than those sug-
gested in (Hosmer and Lemeshow, 1989). We made this choice because it is an indirect means to control
the number of variables in the final model. A less stringent choice (e.g. 0.25 to enter the model as suggested
in (Hosmer and Lemeshow, 1989)) resulted in models which violated the rule of thumb to have at least ten
data points per independent variable.

Multivariate models should be tested for multicollinearity. The presence of multicollinearity makes the inter-
pretation of the model difficult, as the impact of individual covariates on the dependent variable can no longer
be judged independently from other covariates. In severe cases, multicollinearity results in inflated standard
errors for the estimated coefficients, which renders predicted values of the model unreliable.

According to (Hosmer and Lemeshow, 1989), tests for multicollinearity used in least-squares regression are
also applicable in the context of logistic regression. They recommend the test suggested by (Belsley et al.,
1980), which is based on the conditional number of the correlation matrix of the covariates in the model. This
conditional number can conveniently be defined in terms of the eigenvalues of principal components as in-
troduced in Section 3.1.2: 

Let x1,...,xn be the covariates of our model. We perform a principal component analysis on these variables,

and set  to be the largest eigenvalue,  the smallest eigenvalue of the principal components. The

conditional number is then defined as . A large conditional number (i.e., discrepancy between

minimum and maximum eigenvalue) indicates the presence of multicollinearity. A series of experiments
showed that the degree of multicollinearity is harmful, and corrective actions should be taken, when the con-
ditional number exceeds 30 (Belsley et al., 1980).

(iii) To evaluate the model’s goodness of fit, we apply the prediction model to the classes of our data set from
which we derived the model. A class is classified fault-prone, if its predicted probability to contain a fault is
higher than a certain threshold p0. We select the threshold p0 such that the percentage of classes being clas-
sified fault-prone is roughly the same as the percentage of classes that actually are fault-prone. We then
compare the predicted fault-proneness of classes to the actual fault-proneness. We use the following mea-
sures of the goodness of fit of the prediction model:

• Completeness:
Assume we use the prediction model to select classes that are classified fault-prone for inspection. Fur-
ther assume that inspections are 100% effective, i.e., all faults in a class are found during inspection.
Completeness is then defined as the number of faults in classes classified fault-prone, divided by the total
number of faults in the system. It is a measure of the percentage of faults that would have been found if
we used the prediction model in the stated manner. Low completeness indicates that many faults are not
detected. These faults would then slip to subsequent development phases, where they are more expen-
sive to correct.
Counting the percentage of faults found is more precise than counting the percentage of fault-prone
classes found. It ensures that detecting a class containing many faults contributes more to completeness
than detecting a class with only one fault. Of course, faults can be more or less severe (e.g., measured
by the effort required to fix a fault). It would be desirable to also account for the severity of faults when
measuring completeness. However, for this study we had no reliable data available concerning the se-
verity of the faults.

1. We, however, also tried a backward selection process using Principal Component Analysis to pre-select variables 
(i.e., highest loading variables). This is a classical procedure recommended in many textbooks. But the results we 
obtained were not better than the ones we obtained with a forward selection process.

λmax λmin

λmax λmin⁄
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• Correctness:
We can always increase the completeness of our prediction model by lowering the threshold p0 used to
classify classes as fault-prone (π>p0). This causes more classes to be classified fault-prone, thus com-
pleteness increases. However, the number of classes that are incorrectly being classified as fault-prone
also increases. It is therefore important to consider the correctness of the prediction model. Correctness
is the number of classes correctly classified as fault-prone, divided by the total number of classes classi-
fied as fault-prone. Low correctness means that a high percentage of the classes being classified as fault-
prone do not actually contain a fault. We want correctness to be high, as inspections of classes that do
not contain faults is a waste of resources.

• Kappa:
Kappa (Cohen, 1960) is a measures of the degree of agreement of two variables. Kappa values range
between -1 and 1, the higher the value, the better the agreement. A Kappa of zero indicates that the
agreement is no better than what can be expected from chance. Kappa can have a negative value if
agreement is weaker than expected by chance, but this is rare. In our case, we use Kappa to measure
the agreement between predicted and actual fault-proneness of a class. Applying Kappa in this context
requires that the number of classes classified fault-prone, and the number of classes that actually are
fault-prone are roughly the same. This is ensured be our choice of threshold p0.

A fourth measure of the goodness of fit is the R2 statistic. Unlike completeness, correctness, and Kappa, the

definition of R2 is specific to regression techniques based on maximum likelihood estimation, and will be ex-
plained in Section 3.2.

For replications of this study, it will be interesting to compare a number of aspects of the resulting prediction
models: which measures (or rather, which structural dimensions discovered in PCA that the measures cap-
ture) are consistently included in the prediction models? And how does the goodness of fit of the models
compare? Besides PCA, the results from univariate analysis will be helpful here to explain differences found
across studies with respect to models’ variables and goodness of fit.

3.1.4  Correlation to size

For each design measure, we analyze its relationship to the size of the class. This is to determine empirically
whether the measure, even though it is declared as a coupling, cohesion, or inheritance measure, is essen-
tially measuring size. This is important for several reasons. First, if a measure is strongly related to size, then
it might shed light on its relationship with fault-proneness: it is clear that larger classes are more likely to con-
tain faults. Recall that we are interested in increasing our understanding of OO design and code quality, in-
dependently of their size. Second, a model that systematically identifies bigger classes as more fault-prone
is, a priori, less useful: the predicted fault-prone classes are likely to cover a larger part of the system, and
inspection and testing efforts, for instance, could not be focused very well.

For the purpose of analyzing correlations with size, we select the size measures showing the strongest re-
lationship to fault-proneness (see Section 4.3.4): measure Stmts, the number of it executable and declara-
tion statements in a class. We then calculate the Spearman’s rho coefficient between each coupling, cohe-
sion, and inheritance measure and the selected size measure. A non-parametric measure of correlation was
preferred, given the skewed distributions of the design measures that we usually observe.

3.2  Logistic Regression

Logistic regression is a standard technique based on maximum likelihood estimation. In the following, we
give a short introduction to logistic regression, full details can be found in (Hosmer and Lemeshow, 1989) or
(Khoshgoftaar and Allen, 1997).

A multivariate logistic regression model is based on the following equation (the univariate logistic regression
model is a special case of this, where only one variable appears):

π X1 X2 … X, n, ,( ) e
C0 C1X1… CnXn++( )

1 e
C0 C1X1… CnXn++( )

+

------------------------------------------------------------------------ *( )=
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where π is the probability that a fault was found in a class during the validation phase, and the Xi's are the
design measures included as independent variables in the model (called covariates of the logistic regression
equation). 

Our dependent variable, π, is a conditional probability: the probability that a fault is found in a class, as a
function of the class’ structural properties. Unlike with other regression techniques (e.g., linear regression,
poisson regression), the dependent variable is not measured directly. To further illustrate this concept, we
consider a simple example. We could have a prediction model for the fault-proneness of classes as a func-
tion of its depth in the inheritance tree (DIT). A result such as π(DIT=3)=0.4 could be interpreted as “there is
a 40% probability that we detect a fault in a class with DIT=3”, or “40% of all classes with DIT=3 contain a
fault”.

The curve between π and any single Xi - assuming that all other Xj's are constant - takes a flexible S shape
which ranges between two extreme cases:

1. When a variable is not significant, then the curve approximates a horizontal line, i.e., π does not depend
on Xi.

2. When a variable entirely differentiates fault-prone software parts, then the curve approximates a step
function.

Such an S shape is perfectly suitable as long as the relationship between Xi's and π is monotonic, an as-
sumption consistent with the empirical hypotheses to be tested in this study. Otherwise, higher degree terms
have to be introduced in equation (*).

The coefficients Ci are estimated through the maximization of a likelihood function, built in the usual fashion,
i.e., as the product of the probabilities of the single observations, which are functions of the covariates
(whose values are known in the observations) and the coefficients (which are the unknowns). For mathemat-
ical convenience, l = ln[L], the loglikelihood, is usually the function to be maximized. This procedure assumes
that all observations are statistically independent. In our context, an observation is the (non) detection of a
fault in a C++ class. Each (non) detection of a fault is assumed to be an event independent from other fault
(non) detections. This is justified by the way we collect fault data, where each fault instance in a class comes
from a distinct fault report form. Each data vector in the data set describes an observation and has the fol-
lowing components: an event occurrence (fault, no fault) and a set of OO design measurements (described
in Section 2.3). In particular, if more than one fault is detected in a given class, each fault detection results
in a separate observation in our data set. This is a direct consequence of our assumption that fault detections
are independent events. Thus, the number of faults detected in a class is taken into account when we fit our
models. 

We also want to assess the impact of the independent variable on the dependent variable. In logistic regres-
sion, the regression coefficients Ci cannot be easily interpreted for this purpose. Instead, we use a measure
∆ψ, which is based on the notion of odd ratio (Hosmer and Lemeshow, 1989). More specifically, the odds
ratio ψ(X) represents the ratio between the probability of having a fault and the probability of not having a
fault when the value of the measure is X. As an example, if, for a given value X, ψ(X) is 2, then it is twice as
likely that the class does contain a fault than that it does not contain a fault. The value of ∆ψ is computed by
means of the following formula:

 is the standard deviation of the measure. Therefore, ∆ψ represents the reduction/increase in the odds ratio
when the value X increases by one standard deviation. This is designed to provide an intuitive insight into
the impact of independent variables.

To assess the statistical significance of each independent variable in the model, a likelihood ratio chi-square
test is used. Let l = ln[L] be the loglikelihood of the model given in equation (*), and li be the loglikelihood of
the model without variable Xi. Assuming the null hypothesis that the true coefficient of Xi is zero, the statistic

G=-2(l-li) follows a chi-square distribution with one degree of freedom (denoted by ). We test

p=P( >G). If p is larger than some level of significance α (typically, α=0.05), the observed change in the

∆ψ ψ X σ+( )
ψ X( )

-----------------------=

σ

χ2 1( )

χ2
1( )
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loglikelihood may well be due to chance, and Xi is not considered significant. If p<=α, Xi, the observed
change in the loglikelihood is unlikely to be due to chance, and Xi is considered significant.

The global measure of goodness of fit we will use for such a model is assessed via R2 which should not be

confused with the least-square regression R2 - they are built upon very different formulae, even though they

both range between 0 and 1 and are similar from an intuitive perspective. The higher R2, the higher the effect

of the model's explanatory variables, the more accurate the model. However, as opposed to the R2 of least-

square regression, high R2s are rare for logistic regression. For this reason, the reader should not interpret

logistic regression R2s using the usual heuristics for least-square regression R2s. (The interested reader may

refer to (Menard, 1995) for a detailed discussion of this issue). Logistic regression R2 is defined by the fol-
lowing ratio:

where:

• LL is the loglikelihood obtained by Maximum Likelihood Estimation of the model described in formula (*)

• LLS is the loglikelihood obtained by Maximum Likelihood Estimation of a model without any variables, i.e.,
with only C0. By carrying out all the calculations, it can be shown that LLS is given by

where m0 (resp., m1) represents the number of observations for which there are no faults (resp., there is a
fault). Looking at the above formula, LLS / (m0 + m1) may be interpreted as the uncertainty associated with
the distribution of the dependent variable Y, according to Information Theory concepts. It is the uncertainty
left when the variable-less model is used. Likewise, LL / (m0 + m1) may be interpreted as the uncertainty left
when the model with the covariates is used. As a consequence, (LLS - LL) / (m0 + m1) may be interpreted
as the part of uncertainty that is explained by the model. Therefore, the ratio (LLS - LL) / LLS may be inter-
preted as the proportion of uncertainty explained by the model.

4.0  Analysis Results
This section presents the analysis results, following the procedure described in Section 3.0: descriptive sta-
tistics (Section 4.1), principal component analysis (Section 4.2), univariate regression analysis (Section 4.3),
correlation to size (Section 4.4), and multivariate analysis (Section 4.5). In Section 4.6, we consider the
threats to the validity of this study.

4.1  Descriptive Statistics

In sections 4.1.1 to 4.1.4, we discuss the descriptive statistics for the coupling, cohesion, inheritance, and
size measures, respectively. 

4.1.1  Descriptive Statistics for Coupling Measures

Table 1 presents the descriptive statistics for the coupling measures. Columns “Max.”,”75%”, “Med.”, “25%”,
“Min.”, “Mean”, and “Std. Dev” state for each measure the maximum value, interquartile ranges, median, min-
imum, mean value, and standard deviation. Column “N>5” indicates if enough non zero data points are
present to allow further analysis with that measure: “no” means the measure has fewer than six non-zero
data points.

Since each coupling measure has been measured twice (once counting coupling to library classes only, once
counting coupling to non-library classes only), we consider the two versions of each measure to be distinct

R
2 LLs LL–

LLs
-----------------------=

LLS m0

m0
m0 m1+
---------------------

 
 
 

ln m1

m1
m0 m1+
---------------------

 
 
 

ln+=
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measures. To distinguish them in the discussion, we denote the version counting coupling to library classes
by appending an “_L” to its name. For example, MPC_L denotes the measure that counts invocations of
methods from library classes, whereas MPC denotes the measure that counts invocations of methods from
non-library classes.

From Table 1 we can make the following observations:

• The measures counting coupling between classes related through inheritance (all A**IC and D**EC mea-
sures, and NIH-ICP) have relatively low mean values and standard deviations. As we will see in
Section 4.1.3, inheritance has not been used a lot in the systems under study, which explains why these
coupling measures have low values and variance.

• For non-library data, the largest maximum value is for RFC∞, which also has the largest mean and stan-

dard deviation. This may be explained by the fact that RFC∞ is the only measure to count indirect cou-

pling, whereas all other measures count connections to directly coupled classes only. For library data,
ICP_L has the largest mean and maximum values, which should be due to the weighting of method invo-
cations by the number of parameters of the invoked methods. For many library classes, the implementa-
tion is not available, therefore the indirectly invoked methods often cannot be determined, and RFC∞_L

is closer to RFC1_L. 

Measure Coupling to non-library classes only Coupling to library classes only
Max. 75% Med. 25% Min Mean Std. Dev. N>5 Max. 75% Med. 25% Min Mean Std. Dev. N>5

CBO 12 3 2 0 0 2.018 2.155 9 3 2 1 0 2.027 1.503

CBO' 12 3 2 0 0 1.973 2.140 9 2 1 1 0 1.805 1.315

RFC1 86 24 13 8 2 16.938 13.716 130 14 5 2 0 14.708 21.482

RFC∞ 138 26 13 8.5 2 19.513 20.531 182 26 10 2 0 19.265 25.592

MPC 58 6 0 0 0 4.434 9.047 63 15 8 3.5 0 11.062 11.254

ICP 97 9.5 0 0 0 7.478 15.128 166 42 20 7.5 0 29.646 30.851

IH-ICP 12 0 0 0 0 0.372 1.956 10 0 0 0 0 0.522 1.643

NIH-ICP 97 9 0 0 0 7.106 14.991 163 42 20 6.5 0 29.124 30.227

DAC 10 1 0 0 0 0.858 1.569 4 0 0 0 0 0.363 0.768

DAC' 6 1 0 0 0 0.593 0.960 3 0 0 0 0 0.310 0.642

IFCAIC 2 0 0 0 0 0.071 0.320 0 0 0 0 0 0.000 0.000 no

ACAIC 3 0 0 0 0 0.027 0.282 no 1 0 0 0 0 0.044 0.207 no

OCAIC 8 1 0 0 0 0.726 1.390 3 0 0 0 0 0.310 0.656

FCAEC 2 0 0 0 0 0.071 0.320 2 0 0 0 0 0.035 0.229 no

DCAEC 3 0 0 0 0 0.027 0.282 no 0 0 0 0 0 0.000 0.000 no

OCAEC 27 1 0 0 0 0.726 2.736 6 0 0 0 0 0.283 0.977

IFCMIC 9 0 0 0 0 0.283 1.366 no 0 0 0 0 0 0.000 0.000 no

ACMIC 13 0 0 0 0 0.115 1.223 no 4 0 0 0 0 0.212 0.773

OCMIC 38 2 0 0 0 2.425 5.540 2 0 0 0 0 0.354 0.706

FCMEC 9 0 0 0 0 0.283 1.392 no 1 0 0 0 0 0.009 0.094 no

DCMEC 13 0 0 0 0 0.115 1.223 no 0 0 0 0 0 0.000 0.000 no

OCMEC 95 0 0 0 0 2.425 11.600 45 2 0 0 0 1.779 5.390

IFMMIC 13 0 0 0 0 0.558 2.066 0 0 0 0 0 0.000 0.000 no

AMMIC 7 0 0 0 0 0.212 1.145 4 0 0 0 0 0.363 0.897

OMMIC 56 3 0 0 0 3.637 8.365 60 15 8 3 0 10.699 10.806

FMMEC 16 0 0 0 0 0.558 2.142 8 0 0 0 0 0.124 0.888 no

DMMEC 21 0 0 0 0 0.212 1.984 5 0 0 0 0 0.044 0.470 no

OMMEC 36 5 0 0 0 3.637 7.053 49 5 2 0 0 4.407 7.412

Table 1: Descriptive statistics for coupling measures
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• There is evidence of export coupling from non-library classes to library classes, as OCAEC _L and some
of the other export coupling measures have non-zero values. This stems from classes which were reused
with minor modifications: in some instances, these classes actually use the non-library classes (which
were developed from scratch or reused with extensive modifications).

The measures with little or no non-zero data cannot be used in the regression analyses. This is not to say
that these measures are not useful in general. In a data set where the values of the measures have sufficient
variance they may still have an impact on the dependent variable. If additional studies show they have no
variance, then an investigation of why this is the case may be warranted. One outcome may be that such
measurements are not practically useful under some specified circumstances. 

4.1.2  Descriptive Statistics for Cohesion Measures

Table 2 presents the descriptive statistics for the cohesion measures, using the same form as Table 1. We
make the following observations:

• The largest maximum value is for LCOM1 (819) which also has the largest mean (62.1) and standard de-
viation (115.2).

• LCOM3 and LCOM4 both count common attribute references. However, LCOM4 also counts method in-
vocations between methods in a class (cf. definitions in Section 2.3). The values calculated for LCOM3
and LCOM4 are very similar, at least in the data set we used. The reason is that there are only few invo-
cations of methods within a class. This can be seen from the low median and 75% quartile of ICH, which
is a count of method invocations within a class.

• All measures have more than five non zero values and are therefore considered for further analysis.

4.1.3  Descriptive Statistics for Inheritance Measures

Table 3 presents the descriptive statistics for each inheritance measure. The following observations can be
made from the table: 

• Distributions of the values of the measures show that inheritance has been used sparingly within the eight
systems (i.e. low mean values and median for DIT, NOC). Similar results have also been found in other
studies (Chidamber et al., 1998; Chidamber and Kemerer, 1994; Cartwright and Shepperd, 1999). There
is, however, sufficient variance in all the measures to proceed with the analysis. 

• There is the presence of multiple inheritance indicated by the different values returned for DIT, AID, and
NOA, which would otherwise be identical. However, NOP only takes values of 1 or 0 and should have
values greater than this to indicate the presence of multiple inheritance. On further inspection of the sys-
tems, the class with more than one parent, i.e., NOP=2 in this instance, is a library class. Therefore, this
class is not considered in Table 3, but affects the measurement values for some of the system classes. 

Measure Max. 75% Median 25% Min. Mean Std. Dev.

LCOM1 819 61.50 24.50 8.25 0 62.10 115.20

LCOM2 818 36.75 11 1 0 43.10 105.80

LCOM3 40 7 4 2.250 1 5.20 4.80

LCOM4 40 6.750 4 2 1 5.10 4.90

LCOM5 2 0.9118 0.7727 0.6000 0 0.78 0.28

Coh 0.82 0.4964 0.3140 0.1847 0 0.34 0.19

Co 1 0.4667 0.3333 0.1452 0 0.36 0.28

LCC 1 0.8533 0.5224 0.0085 0 0.50 0.38

TCC 1 0.6222 0.3571 0.0085 0 0.40 0.35

ICH 72 8 2 0 0 6.36 11.35

Table 2: Descriptive statistics for cohesion measures
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4.1.4  Descriptive Statistics for Size Measures

Table 4 presents the descriptive statistics for the size measures.

There are classes having no public methods (NMNpub has zero minimum). These are classes used to store
records of customers, rentals, tapes, and videos, and are accessed by friend classes.

There are relatively few private or protected methods, more than half of the classes having no such methods
at all. This may reflect the lack of experience of the programmers involved in this study.

4.2  Principal component analysis

In this section, we present the results from the principal component analysis. All measures with sufficient
variance (six or more non-zero data points) were subjected to an orthogonal rotation as described in
Section 3.1.3. A total of 67 measures was used. This figure includes the size measures, and the library- and
non-library classes variants of the coupling measures.

We identified 16 orthogonal dimensions spanned by the 67 measures, indicating that, as expected, there is
a large amount of redundancy present among these measures. The 16 PCs capture 88.6% of the variance
in the data set.

The loadings of each measure in each rotated component is given in Table 5. Values above 0.7 are set in
boldface, these are the measures we call into play when we interpret the PCs. For each PC, we also provide
its eigenvalue, the variance of the data set explained by the PC (in percent), and the cumulative variance in
the table.  Based on the analysis of the coefficients associated with the measure within each of the rotated
components, the PCs are interpreted as follows.

Measure Max. 75% Median 25% Min. Mean Std. Dev.

DIT 4 1 0 0 0 0.850 1.197

AID 4 1 0 0 0 0.845 1.193

CLD 2 0 0 0 0 0.079 0.331

NOC 5 0 0 0 0 0.177 0.770

NOP 1 1 0 0 0 0.416 0.495

NOD 9 0 0 0 0 0.230 1.102

NOA 4 1 0 0 0 0.867 1.228

NMO 10 1 0 0 0 0.610 1.566

NMI 104 11 0 0 0 6.97 16.13

NMA 41 14 9 6 1 11.38 7.89

SIX 0.52 0.03571 0 0 0 0.047 0.095

Table 3: Descriptive Statistics for Inheritance Measures

Measure Max. 75% Median 25% Min. Mean Std. Dev.

Stmts 554 147 100 52 2 112.0531 84.50896

NAI 22 8 5 2 0 5.477876 4.385645

NM 46 16 11 7 2 13.39823 9.332681

NMpub 46 15 9 4 0 11.81416 10.16168

NMNpub 10 1 0 0 0 1.584071 2.757217

NumPara 117 13 9 4 0 11.000 13.01304

Table 4: Descriptive Statistics for Size Measures
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PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13
Eigenvalue 11.2 9.54 7.29 5.29 3.79 3.56 2.86 2.60 2.39 2.24 2.06 1.67 1.42
Percent 16.7 14.2 10.9 7.90 5.66 5.31 4.27 3.89 3.56 3.35 3.08 2.49 2.13
Cum.% 16.7 30.9 41.8 49.7 55.4 60.7 64.9 68.8 72.4 75.7 78.8 81.3 83.4
CBO -0.03 0.67 0.03 0.02 -0.01 0.03 -0.18 -0.13 0.07 0.18 0.10 -0.01 0.01
CBO' -0.03 0.67 0.03 0.04 -0.01 0.04 -0.19 -0.13 0.07 0.08 0.11 -0.01 0.01
RFC1 0.05 0.73 0.49 -0.07 0.00 -0.02 -0.13 0.04 0.07 0.19 -0.01 0.01 0.05
RFC∞ 0.06 0.81 0.31 -0.10 -0.01 -0.05 -0.11 0.04 0.05 0.10 -0.03 0.01 0.05
MPC 0.04 0.96 0.00 0.01 -0.05 0.12 -0.08 -0.04 0.03 0.08 -0.05 0.01 0.02
ICP 0.02 0.96 0.01 0.00 -0.04 0.15 -0.12 -0.05 0.02 0.10 -0.05 0.02 -0.01
IH-ICP -0.02 0.09 0.00 -0.08 -0.02 -0.05 0.08 -0.05 0.01 0.96 0.01 0.04 0.00
NIH-ICP 0.02 0.96 0.01 0.01 -0.04 0.16 -0.13 -0.05 0.02 -0.05 -0.05 0.01 -0.01
DAC 0.04 0.13 -0.02 0.00 0.04 0.92 -0.16 0.09 0.03 -0.03 -0.05 -0.16 0.03
DAC' 0.05 0.21 -0.01 0.08 -0.01 0.83 -0.14 0.10 0.03 -0.06 -0.11 -0.10 -0.06
IFCAIC 0.04 0.04 0.06 -0.08 0.03 0.28 -0.74 -0.04 0.01 0.03 -0.10 -0.33 0.05
OCAIC 0.03 0.13 -0.03 0.02 0.03 0.94 -0.01 0.11 0.03 -0.04 -0.03 -0.10 0.02
FCAEC -0.10 0.01 0.05 -0.03 -0.01 -0.12 -0.02 0.02 -0.04 -0.01 0.86 -0.01 -0.06
OCAEC -0.03 -0.05 0.10 -0.05 0.80 -0.13 0.02 0.08 -0.02 -0.03 0.10 0.02 -0.08
OCMIC -0.09 0.28 0.02 0.28 0.01 0.50 0.05 -0.13 -0.01 0.02 -0.04 0.19 -0.34
OCMEC -0.08 -0.03 0.04 0.04 0.91 0.07 0.04 -0.01 0.04 0.00 -0.08 0.02 0.03
IFMMIC 0.03 0.43 -0.01 -0.10 0.01 -0.08 -0.78 0.02 -0.01 -0.04 -0.10 -0.12 0.09
AMMIC -0.02 0.09 0.01 -0.08 -0.02 -0.04 0.07 -0.05 0.03 0.97 -0.04 0.04 0.00
OMMIC 0.04 0.92 0.00 0.06 -0.05 0.16 0.14 -0.04 0.03 -0.07 -0.02 0.04 -0.01
FMMEC -0.07 -0.09 0.15 -0.06 -0.03 -0.09 -0.11 -0.04 0.05 -0.02 0.88 0.11 0.03
DMMEC -0.02 -0.01 0.06 0.03 0.00 -0.03 0.04 -0.04 -0.19 -0.01 0.17 0.10 -0.01
OMMEC -0.05 0.05 0.17 0.14 0.03 -0.11 0.05 -0.07 0.10 0.01 0.04 -0.08 0.04
CBO_L 0.31 0.01 0.04 0.11 -0.07 0.12 -0.76 0.06 0.15 -0.08 0.07 -0.06 -0.36
CBO'_L 0.17 0.03 0.05 0.18 -0.05 0.11 -0.83 0.02 0.16 -0.07 0.09 -0.02 -0.17
RFC1_L 0.61 -0.02 -0.01 -0.17 0.33 -0.01 -0.09 0.24 0.03 -0.07 -0.02 -0.11 -0.58
RFC∞_L 0.57 0.22 -0.03 -0.20 0.28 0.09 -0.13 0.20 0.05 -0.04 -0.05 -0.20 -0.56
MPC_L 0.88 0.03 0.04 0.21 -0.07 0.03 -0.14 -0.05 0.05 -0.05 -0.02 -0.18 -0.17
ICP_L 0.95 0.04 0.06 0.04 -0.09 0.00 -0.07 -0.02 0.08 -0.03 -0.02 -0.14 -0.13
IH-ICP_L 0.19 -0.09 -0.01 0.00 -0.07 0.02 -0.08 0.17 0.02 -0.04 0.05 -0.08 -0.91
NIH-ICP_L 0.96 0.05 0.06 0.04 -0.08 0.00 -0.07 -0.02 0.08 -0.02 -0.03 -0.14 -0.09
DAC_L 0.35 -0.03 0.03 0.11 -0.05 0.14 -0.14 -0.03 -0.02 -0.03 -0.02 -0.86 -0.12
DAC'_L 0.26 -0.06 0.03 0.12 -0.06 0.15 -0.16 -0.03 -0.02 -0.03 -0.04 -0.86 -0.17
OCAIC_L 0.40 -0.04 -0.06 0.18 -0.04 0.11 -0.13 -0.05 0.00 -0.03 -0.01 -0.79 -0.09
OCAEC_L -0.01 -0.12 0.19 -0.09 0.56 0.36 -0.09 -0.05 0.04 -0.02 0.27 0.21 0.07
ACMIC_L -0.13 -0.13 -0.01 0.06 0.13 0.09 -0.02 0.85 0.00 -0.03 0.01 0.09 -0.25
OCMIC_L -0.15 0.04 -0.09 0.36 -0.08 -0.11 -0.12 0.28 0.02 0.49 -0.11 -0.07 0.04
OCMEC_L -0.13 -0.08 0.07 -0.02 0.82 0.05 0.08 -0.02 0.12 -0.05 -0.14 0.03 0.00
AMMIC_L 0.36 -0.09 -0.02 -0.08 -0.07 0.05 -0.07 0.16 0.03 -0.06 0.02 -0.15 -0.85
OMMIC_L 0.88 0.04 0.04 0.22 -0.07 0.03 -0.13 -0.06 0.04 -0.04 -0.02 -0.18 -0.11
OMMEC_L 0.16 -0.01 0.39 0.07 -0.01 0.25 -0.13 -0.21 0.08 -0.03 0.25 0.45 0.02
LCOM1 -0.04 0.01 0.95 -0.07 0.00 0.01 0.02 -0.06 -0.10 -0.06 0.07 0.00 0.06
LCOM2 -0.04 -0.03 0.94 -0.11 0.01 -0.01 0.04 -0.05 -0.15 -0.03 0.08 0.01 0.04
LCOM3 0.03 0.07 0.91 -0.23 0.15 -0.04 -0.02 0.04 -0.10 0.00 0.07 0.02 -0.05
LCOM4 0.03 0.02 0.91 -0.22 0.14 -0.01 -0.01 0.02 -0.11 0.01 0.08 0.04 -0.04
LCOM5 0.02 -0.04 0.00 -0.85 -0.03 -0.06 0.01 0.03 -0.23 -0.04 0.04 0.03 -0.03
Coh -0.13 -0.05 -0.34 0.73 -0.02 -0.01 0.06 -0.07 0.02 0.04 -0.16 -0.01 0.09
Co 0.09 0.09 -0.23 0.82 -0.04 0.03 -0.06 0.03 0.08 -0.07 -0.05 -0.13 0.04
LCC 0.11 -0.06 0.03 0.77 -0.06 0.09 -0.07 -0.12 0.13 -0.10 0.09 -0.06 0.12
TCC 0.18 -0.01 -0.15 0.85 -0.03 0.03 -0.12 -0.03 0.05 -0.03 -0.02 -0.17 0.05
ICH 0.10 0.20 0.12 0.13 -0.05 0.00 -0.79 -0.07 0.03 -0.02 0.23 0.01 0.04
DIT 0.56 0.01 -0.08 -0.40 -0.05 0.02 0.02 0.28 0.12 0.19 -0.08 -0.19 -0.49
AID 0.56 0.01 -0.08 -0.40 -0.05 0.02 0.02 0.28 0.12 0.19 -0.08 -0.19 -0.49
CLD -0.13 -0.07 0.26 -0.10 -0.06 -0.05 0.09 -0.04 -0.90 -0.02 0.03 -0.03 0.03
NOC -0.12 -0.08 0.10 -0.14 -0.05 -0.03 0.08 -0.05 -0.94 -0.02 -0.02 -0.01 0.05
NOP 0.42 0.08 -0.09 -0.38 0.07 -0.05 0.05 0.44 0.16 0.27 -0.15 -0.18 -0.31
NOD -0.10 -0.07 0.13 -0.14 -0.05 -0.03 0.07 -0.04 -0.94 -0.02 -0.04 -0.02 0.05
NOA 0.56 0.01 -0.08 -0.40 -0.05 0.02 0.02 0.28 0.12 0.19 -0.08 -0.19 -0.49
NMO 0.04 -0.07 -0.03 -0.03 0.04 0.09 0.00 0.96 0.03 -0.02 -0.01 0.02 -0.14
NMI 0.13 0.14 0.01 -0.27 0.45 -0.13 -0.05 0.33 0.03 0.14 -0.02 -0.02 -0.63
NMA 0.04 0.10 0.84 0.13 0.03 0.07 -0.05 -0.18 0.04 -0.09 0.12 0.01 0.05
SIX 0.25 -0.10 -0.09 -0.20 -0.12 0.10 0.05 0.84 0.07 -0.04 -0.04 -0.03 -0.17
Stmts 0.51 0.56 0.18 0.10 -0.03 0.04 -0.15 -0.10 0.08 -0.18 0.02 0.05 -0.03
NAI 0.12 -0.13 0.16 -0.14 -0.07 0.31 -0.02 -0.23 0.22 -0.20 0.43 -0.05 0.20
NM 0.03 0.40 0.68 -0.05 0.03 -0.08 -0.07 0.07 0.08 0.21 0.02 0.00 0.05
NMpub -0.14 0.36 0.63 0.01 0.05 -0.10 -0.01 -0.03 0.06 0.21 0.02 -0.01 0.04
NMnpub 0.59 0.00 -0.01 -0.21 -0.10 0.10 -0.18 0.32 0.06 -0.09 -0.01 0.06 0.01
NumPara 0.17 0.07 0.81 0.01 -0.03 0.01 -0.23 -0.01 -0.20 -0.02 -0.14 -0.03 -0.02

Table 5:  Rotated Components
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• PC1:MPC_L, ICP_L, NIH_ICP_L, and OMMIC_L measure the extent of import coupling from library
classes through method invocations. 

• PC2: CBO, CBO’, RFC1, RFC∞, MPC,ICP, NIH-ICP, and OMMIC. These measures count import cou-

pling from non-library classes through method invocation. 

It is interesting to observe that import coupling from library classes through method invocations (PC1) 
and import coupling from non-library classes (PC2) are two orthogonal dimensions. This indicates that a 
class with high import coupling from library classes does not necessarily have particularly high or low 
import coupling from non-library classes; the two forms of coupling are unrelated in our data set.

• PC3: LCOM1, LCOM2, LCOM3, LCOM4, NMA, and NumPara. The LCOM cohesion measures count
pairs of methods of classes within a class that use attributes in common. These are not normalized mea-
sured, i.e., they have no upper bounds. As noted above, the fact that, e.g., LCOM4 additionally accounts
for method invocations does not significantly affect the distribution of the measure to create a separate
dimension. Also present in this PC are two size measures, NMA and NumPara. This indicates that the
LCOM measures have a correlation to size: the more methods (and therefore method parameters) in a
class, the higher the number of pairs of methods with no common attribute usage is likely to be.

• PC4: LCOM5, Coh, Co, LCC, TCC. These are normalized cohesion measures, i.e., measures having up-
per and lower bounds. LCOM5 is an inverse cohesion measure and ranges between 0 (maximum cohe-
sion) and 2 (minimum cohesion). The other measure are ‘straight’ cohesion measures where high values
indicate high cohesion and vice versa. This explains why LCOM5 is the only contributing measure with
negative loading. 

• PC5: OCAEC, OCMEC, and OCMEC_L measure export coupling to classes not related via friendship or
inheritance, by types of coupling other than method invocations.

• PC6: DAC, DAC’, and OCAIC measure import coupling from non-library classes through aggregation.

• PC7: IFCAIC, IFMMIC, CBO_L, and CBO’_L, ICH. This PC cannot easily be interpreted. First, we have
mostly coupling measures, and one measure ICH that was suggested as a cohesion measure. We will
later see that ICH is not likely to be measuring cohesion. Rather, it possesses properties of a complexity
measure. The fact that all these measure show up in the same PC means that there are classes with high
import coupling from friend classes, which also tend to be coupled to a large number of library classes,
and have high complexity. This is an interesting observation, but may be peculiar to the data set we used.

• PC8: ACMIC_L, NMO, SIX. NMO and SIX are inheritance measures which look at method overriding. We
therefore interpret this PC to measure changes to a parent class in its child class. The fact that ACMIC_L
is also present here may be due to chance. ACMIC_L measures a certain type of inheritance-based cou-
pling. A prerequisite for all three measures to be different from zero is that the class is not at the root,
which may explain the positive relationship between these measures.

• PC9: CLD, NOC, and NOD measure, for a class the depth in the hierarchy which is below the class. A
class with a non-zero CLD has at least one child class (NOC) and is likely to have more descendents.

• PC10: IH-ICP and AMMIC measure import coupling through method invocations of non-library ancestor
classes.

• PC11: FCAEC and FMMEC measure export coupling to friend classes.

• PC12: DAC_L, DAC’_L, and OCAIC_L measure import coupling from library classes through aggrega-
tion. Again, with PC8 we also have a corresponding dimension which counts aggregation coupling to non-
library classes only.

• PC13: IH-ICP_L and AMMIC_L measures inheritance-based import coupling from library classes through
library classes. Again, this is the library-coupling counterpart of PC10.

• There are three more PCs with eigenvalues>1. These PCs could not be meaningfully interpreted, and we
therefore did not provide their coefficients in Table 5.

From these interpretations, we can draw a number of observations.

• Most of the dimensions identified are coupling dimensions (9 of the 13 interpreted PCs). One dimension
is entirely determined by cohesion measures (PC4), one is entirely determined by inheritance measures
(PC9), and another one (PC8) is also likely to be measuring an inheritance-related dimension. The dom-
inance of coupling dimensions may in part be due to the larger number of coupling measures considered
here. However, it also suggests that from all structural class properties considered here, coupling is the
one that has received the most attention in its investigation so far in the literature.
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• There is one dimension that may be interpreted as size: PC3.

• PCs that are mixtures of measures capturing different structural attributes are rare (PC3: size and cohe-
sion measures, PC7: coupling and cohesion, PC8: (inheritance-based) coupling and inheritance). This
shows that by and large, these measures actually do capture distinct dimensions.

• However, we also have a number of measures that cannot be assigned to any of the PCs at all, or are
somewhat visible in more than one PC. This affects some of the coupling measures (especially CBO and
CBO’ which are measuring both import and export coupling, and RFC1_L and RFC∞_L, which are a cross

between size and import coupling. 
With respect to inheritance measures, DIT, AID, and NOA are “shared” between PC1 (method invoca-
tions of library classes) and PC13 (inheritance-based method invocations of library classes).
Interestingly, except for NMA and NumPara in PC3, none of the size measures is clearly visible in any
particular PC. These measures have loadings around 0.5 in two or more PCs.

• Among the measures considered here are variants of earlier measures capturing the same concept (for
instance, RFC1 and RFC∞ in PC2, LCOM1-LCOM4 in PC3, TCC and LCC in PC4, etc.). These variants

were mostly defined with the intention to improve existing measures by eliminating problems that were
identified based on theoretical considerations (see (Briand et al., 1999; Briand et al., 1998a) for a sum-
mary of these discussions). From a practical perspective, these differences in the definitions do not seem
to matter much, because the variants lie within the same PCs as the original measure.

For the coupling measures, we further observe:

• Most of the PCs are made up either from measures counting coupling to library classes, or from measures
counting coupling to non-library classes only. Only a few PCs are constituted by a mix of library and non-
library coupling measures.

• Because we observe multiple orthogonal dimensions of coupling, we conclude that a thorough analysis
of coupling in an OO system requires multiple coupling measures. Defining one measure that would com-
bine the various dimensions of coupling is not likely to be suitable to completely describe class coupling
in an OO system.

• The results also show that some coupling categories (or combinations of thereof) in the classification sug-
gested in (Briand et al., 1997b) seem to correspond to actual coupling dimensions, i.e., they match with
a PC. However, the original classification contained 18 classes whereas we have identified less orthog-
onal dimensions. Therefore, several refinements are not supported by empirical evidence, e.g., the dif-
ferent types of interdependency do not appear to capture different dimensions in the context of export
coupling to friend classes, since their measure are in the same PC.

For the cohesion measures, we can say that normalization clearly makes a difference dimension-wise: the
measures are clearly separated into normalized or non-normalized dimensions, i.e., no dimension includes
both normalized and non-normalized measures. Although it is still unclear whether cohesion measures
should be normalized to reflect variations in size across classes (Briand et al., 1996b), it is definitely a deci-
sion which has an impact on the structural property captured by the measures.

ICH is a special case. It differs from all other cohesion measures in two aspects. First, the type of intra-class-
connection considered are method invocations only, paying no attention to class attributes. All other cohe-
sion measures investigated here consider references to attributes in some way. Second, ICH also possesses
a theoretical property that sets it apart from the other measures: ICH is additive. If two unrelated, but highly
cohesive classes c and d are merged into a single class e, the cohesion of the class e would be the sum of
the cohesion of the separate classes c and d. That is, class e has an even higher cohesion than any of the
separate classes. This is counter-intuitive, as an object of class e should represent two separate, semantic
concepts and therefore be less cohesive. It is therefore unlikely that ICH is a measure of cohesion. However,
since it has been proposed as a cohesion measure in (Lee et al., 1995), we have considered it as a such
here.

4.3  Univariate logistic regression

In this subsection, we investigate the relationship of the individual measures to fault-proneness. Coupling,
cohesion, inheritance, and size measures are treated in separate subsections below.
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4.3.1  Univariate Analysis - Coupling results

The results of the univariate analysis are summarized in Table 6. For each measure, the regression coeffi-

cient and standard error is provided (Columns “Coeff.” and “Std Err”), the R2 and ∆ψ value (as defined in
Section 3.2), and the statistical significance (p-value), which is the probability that the coefficient is different
from zero by chance.

None of the univariate outliers was found to be influential. Looking at the import coupling measures, we note
that most measures which display sufficient variance also have a significant relationship to fault-proneness.
This provides strong support for hypothesis H-IC that classes with high import coupling are more fault prone.
In particular, all the measures that are counts of method invocations (e.g., RFC*, *ICP, OMMIC) show very
strong ∆ψ values, far above the ones of the other measures, for both library and non-library coupling. Since
∆ψ is corrected for the standard deviation of each measure, we may conclude that method invocation is the
main coupling mechanism having an impact on fault proneness in the systems under study. 

The measures IH-ICP, IFCAIC, ACMIC, and IFMMIC, as well as DAC’_L, ACMIC,_L and OCMIC_L appear
not be related to fault-proneness. Although these measures fulfill our minimum variance criterion, their mean
values and standard deviations are relatively low as compared to the significant measures. This may explain
why we failed to find a significant relationship for these measures. 

Measure
Coupling to Non-Library Classes Coupling to Library Classes Only

Coeff. Std Err p R2 ∆ψ Coeff. Std Err p R2 ∆ψ
CBO 0.325 0.080 <.0001 0.088 2.012 0.896 0.173 <.0001 0.121 3.844

CBO' 0.338 0.083 <.0001 0.091 2.062 0.868 0.198 <.0001 0.082 3.133

RFC1 0.085 0.018 <.0001 0.132 3.208 0.048 0.012 <.0001 0.093 2.797

RFC∞ 0.102 0.018 <.0001 0.213 8.168 0.059 0.011 <.0001 0.160 4.503

MPC 0.182 0.043 <.0001 0.158 5.206 0.109 0.022 <.0001 0.137 3.417

ICP 0.135 0.028 <.0001 0.189 7.710 0.041 0.007 <.0001 0.159 3.511

IH-ICP 0.044 0.082 0.5898 0.001 1.090 0.403 0.205 0.0491 0.033 1.938

NIH-ICP 0.149 0.031 <.0001 0.196 9.272 0.041 0.007 <.0001 0.159 3.482

DAC 0.212 0.100 0.0329 0.020 1.395 0.464 0.224 0.0386 0.017 1.428

DAC' 0.339 0.164 0.0389 0.020 1.385 0.345 0.261 0.1867 0.006 1.248

IFCAIC 0.748 0.956 0.4334 0.003 1.270 fewer than six non-zero values

ACAIC fewer than six non-zero values fewer than six non-zero values

OCAIC 0.250 0.116 0.0307 0.021 1.416 0.511 0.258 0.0476 0.016 1.398

FCAEC 0.586 0.591 0.3213 0.004 1.206 fewer than six non-zero values

DCAEC fewer than six non-zero values fewer than six non-zero values

OCAEC -0.492 0.166 0.0030 0.043 0.260 0.096 0.147 0.5131 0.001 1.098

IFCMIC fewer than six non-zero values fewer than six non-zero values

ACMIC fewer than six non-zero values -0.319 0.218 0.1441 0.007 0.782

OCMIC 0.0226 0.026 0.3384 0.0028 1.133 0.070 0.193 0.7168 0.000 1.051

FCMEC fewer than six non-zero values fewer than six non-zero values

DCMEC fewer than six non-zero values fewer than six non-zero values

OCMEC -0.017 0.015 0.2520 0.004 0.816 -0.035 0.032 0.2762 0.004 0.830

IFMMIC 0.220 0.131 0.0922 0.021 1.575 fewer than six non-zero values

AMMIC 0.0567 9.134 0.6735 0.001 1.067 0.747 0.267 0.0051 0.045 1.954

OMMIC 0.191 0.047 <.0001 0.152 4.937 0.110 0.023 <.0001 0.133 3.276

FMMEC 0.134 0.079 0.0891 0.017 1.333 fewer than six non-zero values

DMMEC 0.924 0.844 0.2737 0.015 1.214 fewer than six non-zero values

OMMEC 0.023 0.017 0.1664 0.007 1.180 0.026 0.023 0.2616 0.005 1.209

Table 6: Univariate analysis with coupling measures
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Turning to export coupling measures, we observe that only OCAEC is significant at α=0.05. However, the
negative regression coefficient indicates that classes high export coupling are likely to be less fault-prone
than classes with low export coupling. Overall, there is no evidence for hypotheses H-EC. Apparently, how
much a class is being used by other classes has little effect on the probability for the class to contain a fault.

In (Briand et al., 1997b), more export coupling measures have been found significant. In that study, which
uses the same C++ systems and the same fault-data, the distinction between coupling to library classes and
non-library classes has not been made: both types of coupling were added up in one measure. This indicates
that, at least in the data set used, export coupling to both types of classes has to be counted together to find
a relationship to fault-proneness. Other differences with (Briand et al., 1997b) are mainly due to the refine-
ment and debugging of the static analyzer used to capture the various coupling measures. 

4.3.2  Univariate Analysis - Cohesion results

The results of the univariate analysis are summarized in Table 7 which is presented in the same form as
Table 6.

• The coefficients for the inverse cohesion measures LCOM1 to LCOM5 are positive, those for the straight
cohesion measures Coh, Co, LCC, and TCC are negative (though the coefficients for some measures
are likely to be different from zero by chance). In each case, this indicates an increase in the predicted
probability of fault-detection as the cohesion of the class (as measured by the measures) decreases. The
only exception to this is ICH, where the positive coefficient suggests that fault-proneness increases with
cohesion. Again, this indicates that ICH is very likely not a cohesion measure. In fact, ICH can be shown
to fulfill the properties for complexity measures defined in (Briand et al., 1996b). We can then interpret
this result that the higher the complexity of a class, the more fault-prone it is.

• Only the measures LCOM3, Coh, and ICH are significant at α=0.05. ICH is very significant (p=0.0002),
but unlikely to measure cohesion. Overall, these results only weakly support our hypothesis H-COH, that
highly cohesive classes are less fault-prone.

• Measures LCOM1, LCOM3, LCOM4, LCOM5, Coh, and ICH are all significant at α=0.25 and, as specified
in Section 3.1.3, will be considered for building multivariate prediction models in the next section.

• Measure LCOM2 is the least significant measure. LCOM2 has been criticized not to discriminate classes
very well (Basili et al., 1996; Henderson-Sellers, 1996). As a result, it is unlikely to be a useful predictor.
Our findings provide some empirical evidence that supports this. 

4.3.3  Univariate Analysis - Inheritance results

Univariate analysis is performed on inheritance measures. The results from Table 8 show that:

• All the inheritance measures are significant at α=0.05.

• Hypothesis H-Depth for measures DIT and AID is supported. The deeper the class in the inheritance hi-
erarchy, the higher its fault-proneness. 

Measure Coeff Std. Err. p-value R2 ∆ψ

LCOM1 0.0025 0.0020 0.2135 0.006 1

LCOM2 0.0004 0.0017 0.7898 0.000 1

LCOM3 0.1474 0.0615 0.0164 0.025 2.054

LCOM4 0.0915 0.0542 0.0914 0.012 1.554

LCOM5 0.9803 0.6373 0.1240 0.008 1.315

Coh -2.2314 0.7855 0.0045 0.028 0.654

Co -0.5434 0.6463 0.4005 0.002 0.859

LCC -0.2743 0.3947 0.4870 0.002 0.902

TCC -0.2859 0.4445 0.5202 0.001 0.906

ICH 0.1129 0.0300 0.0002 0.072 3.485

Table 7: Univariate analysis for cohesion measures
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• Hypothesis H-Ancestors for measures NOA, NOP, NMI is supported. The more parents or ancestors a
class inherits from, and the more methods a class inherits, the higher its fault-proneness. Because these
measures together with DIT and AID are all in PC1, H-Depth and H-Ancestors are difficult to distinguish.

• Hypothesis H-Descendents (measures NOC, NOD, CLD): The results indicate that classes with a high
number of children or descendents are less fault-prone. Perhaps, a greater attention (e.g., through in-
spections) is given to them as they are developed since many other classes depend on them. As a result,
fewer defects are found during testing. However, the relatively low ∆ψ shows that the impact on fault-
proneness is not so strong for these measures.

• Hypothesis H-OVR for measures NMO and SIX is supported. The more overriding methods in a class,
the higher its fault-proneness.

• Hypothesis H-SIZE is empirically supported by NMA results. The more methods added to a class, the
higher its fault-proneness.

The results also show that the measures belonging to PC1 and PC3 show the strongest impact on fault
proneness. The interpretation is that what matters the most in terms of class fault proneness is its depth in
the hierarchy and the extent of change from his parent class(es). 

One influential univariate outlier was detected for measures SIX and NMO: removal of the outlier causes SIX
and NMO to become significant at α=0.05 in univariate analysis. This class was derived from an abstract
library class. Some of its methods declarations and implementations were entirely generated by C++ macros
provided by the library class. Thus, these methods were not implemented manually, which may explain why
fewer faults were detected in this class.

4.3.4  Univariate Analysis - Size Results
The results from univariate analysis on the size measures is summarized in Table 9. 

All measures are significant, with positive coefficients, supporting our hypothesis H-SIZE that larger classes
are more likely to be fault-prone. Measure Stmts, which is a count of the executable and declaration state-
ments and therefore available only after implementation, has the biggest impact on fault-proneness
(∆ψ=4.952). The impact of the other measures, which rely on information available from the class interface,
is weaker.

Measure Coeff Std. Err. p-value R2 ∆ψ

DIT 0.6993 0.1614 0.0001 0.086 2.311

AID 0.6931 0.1640 0.0001 0.081 2.285

CLD -2.276 0.8020 0.0045 0.042 0.470

NOC -1.468 0.6663 0.0276 0.053 0.322

NOP 1.572 0.3272 0.0001 0.089 2.177

NOD -1.393 0.6884 0.0429 0.053 0.215

NOA 0.6811 0.1540 0.0001 0.093 2.307

NMO 0.5144 0.2296 0.0243 0.024 1.948

NMI 0.0254 0.0122 0.0373 0.025 1.496

NMA 0.0681 0.0221 0.0021 0.039 1.710

SIX 6.886 2.632 0.0089 0.029 1.337

Table 8: Univariate analysis with inheritance measures

Measure Coeff Std. Err. p-value R2 ∆ψ

Stmts .0189313 .0030775 <0.0001  0.2133 4.952

NAI 0.1011222 0.0357943 0.005 0.0300 1.558

NM 0.0756322 0.0205779 <0.0001 0.0623 2.026

NMpub 0.0396085 0.145494 0.006 0.0288 1.496

NMNpub 0.1245331 0.0560172 0.026 0.0201 1.407

NumPara 0.06352 0.0207718 0.002 0.0362 2.286

Table 9: Univariate analysis with size measures
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One univariate outlier for measure NumPara was removed. When the outlier is included, the measure is no
longer significant at α=0.05. This outlier (the class with 113 parameters) consists of a number of methods
with empty implementation bodies. This was dead code the developers forgot to delete.

4.4  Correlation with size

In this section we analyze the correlation of the coupling, cohesion, and inheritance measures to the size of
the class. We use Stmts, the number of declaration and executable statements in the class, to measure size,
as this is the size measure showing the strongest relationship with fault-proneness.

In Table 10, we indicate for each coupling measure the Spearman’s Rho coefficient (r) and the correspond-
ing p-value. Spearman’s rho is well below 0.5 for most of these measures, which indicates that the correlation
to size is at best moderate. 

Measure

Coupling to Non-
Library Classes only

Coupling to Library 
Classes only

rho p-value rho p-value

CBO 0.3217 <.0001 0.3639 <.0001

CBO' 0.3359 <.0001 0.3550 <.0001

RFC1 0.3940 <.0001 0.3125 <.0001

RFC∞ 0.4310 <.0001 0.3431 <.0001

MPC 0.3232 <.0001 0.5180 <.0001

ICP 0.3168 <.0001 0.4675 <.0001

IH-ICP -0.1240 0.1082 0.1790 0.0176

NIH-ICP 0.3455 <.0001 0.4672 <.0001

DAC 0.1753 0.0163 0.1514 0.0443

DAC' 0.1958 0.0088 0.1370 0.0710

IFCAIC 0.1557 0.0438 n.a.

ACAIC -0.0167 0.8301 -0.0022 0.9777

OCAIC 0.1294 0.0785 0.1771 0.0194

FCAEC 0.0297 0.7010 0.0588 0.4478

DCAEC -0.0429 0.5810 n.a.

OCAEC 0.0765 0.3058 0.0922 0.2266

IFCMIC 0.0935 0.2240 n.a.

ACMIC -0.0167 0.8301 -0.1432 0.0629

OCMIC 0.0493 0.4913 -0.1082 0.1533

FCMEC 0.0484 0.5299 0.0548 0.4807

DCMEC -0.0429 0.5810 n.a.

OCMEC -0.0855 0.2528 -0.0294 0.6884

IFMMIC 0.2365 0.0019 n.a.

AMMIC -0.1229 0.1115 0.1783 0.0181

OMMIC 0.2765 0.0001 0.5243 <.0001

FMMEC -0.0057 0.9407 0.0566 0.4640

DMMEC -0.0345 0.6553 -0.0167 0.8301

OMMEC 0.1732 0.0136 0.2680 <.0001

Table 10: Correlation of coupling measures to size
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Table 11 shows Spearman’s rho for the relationship between each cohesion measure and size. We see that
none of the cohesion measures has a strong relationship to size. Even ICH, which possesses the additive
property of a size measure, is not strongly correlated to size. However, it has the highest rho coefficient.

From Table 12 we see that none of the inheritance measures has a strong correlation to size. NMA has the
strongest correlation to size. NMA is the number of methods added to a class and a correlation to size is
therefore to be expected.

4.5  Multivariate Logistic Regression Model

We will now investigate a number of multivariate prediction models, built from different subsets of the mea-
sures we have analyzed so far. The main goals of these models is to build accurate prediction models for
class fault-proneness by using all the design measures available together. We evaluate the accuracy of the
best prediction model we found using a 10-cross-validation process and discuss possible applications of
such a model. 

4.5.1  Comparing Multivariate Models

In this section, we compare models built from size measures only, from coupling, cohesion, and inheritance
design measures only, and one allowing all measures (design coupling, cohesion, inheritance, and size) to
enter the model. With these models, we seek to find answers to the following questions:

• Are coupling, cohesion, and inheritance design measures fault-proneness predictors that are comple-
mentary to design size measures?

Measure rho p-value

LCOM1 0.270 <.001

LCOM2 0.134 0.042

LCOM3 0.209 0.002

LCOM4 0.173 0.010

LCOM5 -0.096 0.135

Coh -0.077 0.231

Co 0.242 <.001

LCC 0.252 <.001

TCC 0.252 <.001

ICH 0.439 <.001

Table 11: Correlation of cohesion measures to size

Measure rho p-value

DIT 0.089 0.225

AID 0.088 0.229

CLD -0.171 0.026

NOC -0.170 0.027

NOP 0.054 0.490

NOD -0.170 0.027

NOA 0.099 0.180

NMO 0.048 0.521

NMI 0.056 0.442

NMA 0.397 <.0001

SIX 0.021 0.774

Table 12: Correlation of Inheritance Measures to size
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• How much more accurate is a model including the more difficult to collect coupling, cohesion, and inher-
itance measures? If it is not significantly better, then the additional effort of calculating these more expen-
sive measures instead of some easily collected size measures would not be justified.

Design Size Model

Below is the model that resulted from running a stepwise selection process as described in Section 3.1.3,
allowing only the design size measures to enter the model. 

We will refer to this model as “Model I”. The model has three covariates, the loglikelihood of the model is -

127.94, and R2 of 0.1399 is very low, even lower than the R2 of measure Stmts in univariate analysis
(0.2133). Model I has one multivariate outlier, which is not influential and therefore was retained for the final

model fitting. The conditional number for this model is , well below the critical
threshold of 30. The signs of the coefficients of measures NMpub and NumPara are negative, though they
were positive in univariate analysis. This is due to suppressor relationships between the variables, which are
commonly observed in multivariate regression analysis (Darlington, 1968).

We applied this model to the 113 classes of the LALO system in order to compare the predicted and actual
fault-proneness of the classes. A class was classified “predicted fault-prone”, if its predicted probability to
contain a fault is higher than 0.75. This threshold was selected to roughly balance the number of actual and
predicted fault-prone classes. The contingency table below summarizes these results:

The model identifies 53 classes as fault-prone, 32 of which actually are fault-prone (60% correctness) and
contain a total of 158 of all 234 faults (67% completeness). The Kappa value for the degree of agreement
between actual and predicted fault-proneness is 0.25, which is rather low. If we used the predictions of this
model to select classes for inspection, the low correctness of the model implies that a large number of class-
es (21) that do not contain any fault would have been inspected in vain.

Model built from coupling, cohesion, and inheritance measures

Next, we build a model allowing all coupling, cohesion, and inheritance measures to enter the model, follow-
ing the forward selection process. Concerning the two versions of coupling measures (coupling to library and
non-library classes) calculated for each system class, we again treat them as separate measures, and allow
them individually to enter or exit the model. Since, as we have seen, coupling to library- and non-library class-
es are orthogonal dimensions related to fault-proneness, this will yield more accurate prediction models than
a model built of measures which do not distinguish coupling from library and non-library classes.

This model (Model II) consists of seven measures: four coupling measures, three inheritance measures. Non
of the cohesion measures was included, reflecting the results found in univariate analysis that many of these
measures are not significant indicators of fault-proneness. There is one multivariate outlier with respect to

Measure Coeff. Std. Error p

NM .4493462 .0933279 0.000

NMpub -.3145506 .0772522 0.000

NumPara -.0598625 .0220541 0.007

Intercept -.3882196 .3368118 0.249

Table 13: Model I - Size model

predicted

π<=0.75 π>0.75

actual
no fault 39 classes 21 classes 60 classes

fault
21 classes,
76 faults

32 classes,
158 faults

53 classes
234 faults

60 classes 53 classes 113 classes

Table 14: Goodness of fit of model I

2.2396 0.0300⁄ 8.6381≈

Σ

Σ
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these covariates, which is not influential and therefore retained. The condit ional number is

. 

The measures NMI, RFC1_L, and NOP cannot be clearly attributed to one PC. The remaining four measures
cover PC1 (method invocations of library classes), PC2 (method invocations of non-library classes), PC9
(depth of inheritance tree below the class), and PC11 (export coupling to friend classes).

The model has a much better goodness of fit than Model I (loglikelihood = -70.62, R2=0.53). Again, we ap-
plied the model to the 113 classes to compare the predicted and actual fault-proneness:

We selected a threshold of 0.65 to balance the number of actual and predicted fault-prone classes. Model II
performs much better: Off the 53 classes predicted fault-prone, 43 actually are fault-prone (81% correct-
ness), which contain 219 of all 234 faults (94% completeness). The Kappa measure of agreement between
actual and predicted fault-proneness is 0.64, much higher than Model I. The high goodness of fit indicates
that the coupling and inheritance measures capture structural dimensions with a strong relationship to fault-
proneness, which go beyond the size of classes. A model based on structural class properties can outper-
form models based on class size measures alone, which justifies the extra effort to collect these measures.

Model built from coupling, cohesion, inheritance, and design size measures

Finally, we will consider a model built using the forward selection process, allowing all coupling, cohesion,
inheritance, and size measures to enter the model:

This model (Model III) consists of nine covariates: four coupling measures, three inheritance measures
(though NMA rather should be considered measuring size), and two size measures. With nine covariates,
the “ten data points per covariate” rule of thumb is still observed. This model has two multivariate outliers,
which again were not influential and therefore retained to fit the final model. The conditional number of

 is higher than that of the previous to models, but still well below the critical thresh-
old of 30.

Compared to Model II, dimension PC1 is no longer represented in the model. Instead, size measures (in-
cluding NumPara of PC3) and another export coupling measure (OCAEC of PC5) are included.

Measure Coeff. Std. Error p

RFC∞ .1748663 .0274879 0.000

NOP 3.152051 .6414347 0.000

RFC1_L .2206044 .0461345 0.000

NMI -.2975254 .0549887 0.000

FMMEC .5500034 .161769 0.001

NIHICP_L -.0550239 .0163976 0.001

CLD -2.572296 .8912236 0.004

Intercept -3.332759 .6132243 0.000

Table 15: Model II - based on coupling, cohesion, and inheritance measures

predicted

π<=0.65 π>0.65

actual
no fault 50 classes 10 classes 60 classes

fault
10 classes,
15 faults

43 classes,
219 faults

53 classes
234 faults

60 classes 53 classes 113 classes

Table 16: Goodness of fit of model II

2.9261 0.0405⁄ 8.5031≈

Σ

Σ

3.1154 0.0271⁄ 10.720≈
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The results above could indicate that RFC1_L and NIH_ICP_L in Model II were included because of their
moderate relationship to size, which is related to fault-proneness. When size measures are allowed to enter
the model, those coupling measures are then not selected as significant covariates anymore.

There is a higher amount of multicollinearity present than in Model II, as shown by the VIFs. OMMIC and
RFC∞ of PC2 have coefficients with opposite signs, the size measures NM and NumPara have opposite

signs. This makes the interpretation of the model difficult. However, it is not our goal here to come up with
interpretable multivariate models, which is inherently difficult in the context of regression; first and foremost
we are interested in their goodness of fit.

The loglikelihood of this model is -65.11, and the R2 = 0.56, i.e., slightly higher than the model without size
measures. The classification results of this model actually are, however, a bit worse than Model II, but they
are still very good:

A threshold of 0.7 was selected to better balance the number of actual and predicted fault-prone classes. 53
classes are predicted fault-prone, which contain 210 faults (90% completeness), and 11 of these classes are
not actually fault-prone (79% correctness). Kappa=0.60 is slightly lower than that of Model II.

4.5.2  Model evaluation

Let us further investigate Model II which yielded the best classification for class fault-proneness. The accu-
racy of this model looks very good. However, it is somewhat optimistic since the prediction model was ap-
plied to the same data set it was derived from, i.e., we were assessing the goodness of fit of the model. To
get an impression of how well the model performs when applied to different data sets, i.e., its prediction ac-
curacy, we performed a 10-cross validation (Stone, 1974) of Model II. Then, more realistic values for com-
pleteness, correctness and Kappa can be devised.

For the 10-cross validation, the 113 data points were randomly split into ten partitions of roughly equal size.
For each partition, we re-fitted the model using all data points not included in the partition, and then applied
the model to the data points in the partition. We thus again obtain for all 113 classes a predicted probability
of their fault-proneness. Classes with predicted probability π<=0.65 were classified “not predicted fault-

Measure Coeff. Std. Error p

CLD -3.517571 1.315061 0.007

NOP 4.171345 .6731571 0.000

OCAEC -1.048326 .405435 0.010

RFC∞ .4639629 .1113023 0.000

FMMEC .3506641 .1500296 0.019

NM -.7262171 .1636992 0.000

NMA .5256345 .1103538 0.000

NumPara -.118577 .0430447 0.006

OMMIC -.2693183 .0848974 0.002

Intercept -2.836428 .6702554 0.000

Table 17: Model III - allowing all measures to enter the model

predicted

π<=0.7 π>0.7

actual
no fault 49 classes 11 classes 60 classes

fault
11 classes,
24 faults

42 classes,
210 faults

53 classes
234 faults

60 classes 53 classes 113 classes

Table 18: Goodness of fit of model III

Σ

Σ
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prone”, the others “predicted fault-prone”. The threshold 0.65 was retained from the model validation in the
previous section.

The 54 classes predicted fault-prone contain 217 faults (92% completeness), 14 of these classes do not ac-
tually contain a fault (78% correctness). The Kappa value of 0.59 is not much lower than the 0.64 value ob-
tained for Model II above.

The completeness and correctness figures are slightly lower than above. A prediction model is likely to per-
form better when it is applied to the data set it was derived from. Since with a 10-cross validation this is no
longer the case, the model performs worse. These results, however, indicate that the model is still viable
when applied to a comparable data set other than the one used for model fitting.

Model application

To illustrate how a prediction model such as the one presented above can be applied in practice, consider
Figure 2. On the X-axis, we plotted the 113 system classes, sorted in decreasing order of their predicted
fault-proneness. The values for the predicted fault-proneness were taken from the 10-cross-validation. The
lower curve is the cumulative size of the classes (measured by Stmts, the number of executable and decla-
ration statements), in percent. For example, at X=30 the value of the curve is 43, which means that the 30
classes with highest predicted fault-proneness constitute 43% of the code of the system. The upper curve is

the accumulated number of actual faults in the classes, in percent. At X=30, this curve is at Y≈64, which
means the first 30 classes contain 64% of the actual faults.

When planning inspections during the software development process, we would like to be able to make a
trade-off between the resources spent on inspections on the one hand, and the effectiveness of inspections
on the other hand. To optimize this trade-off, we can use the graph in Figure 2 to determine how many per-
cent of the faults in the system we can expect to find by inspecting a certain percentage of the system code,
and which classes should be inspected. For instance, assume we have resources available to inspect 30%
of the code. From Figure 2 we can tell that the first 20 classes with highest predicted fault-proneness roughly
constitute 30% of the code. If we select these classes for inspection, then we can expect to find a maximum
of 52% of all faults in them.

A problem with the practical application of the graph in Figure 2 is that the upper curve, the cumulative per-
centage of actual faults, is, a priori, unknown. However, if the shape of the upper curve proves to be a con-
stant across projects within a development environment, the graph could be used as a reference when plan-
ning inspections. Initial results indicate that the shape of the graph may indeed be similar in different projects.
In a replication of the analysis described in this paper (Briand et al., 1998b), using data from an environment
with very different characteristics (industrial setting with professional developers and a larger system), the
analogous graph for that data set was very close to the one presented here. But in general, whether the
shape of the upper curve is constant across projects in a given environment needs to be investigated.

Alternatively, a different analysis technique such as poisson regression (Long, 1997) could be used, which
yields a model that predicts the number of faults in a class (as opposed to the predicted probability of fault
detection in logistic regression). The predicted number of faults could then be used as a basis for planning
inspections. The application of poisson regression to build software quality models will be part of our future
work.

As is visible in Figure 2, the upper curve (percent of actual faults) shows a steeper slope than the lower curve
(percent of system size), before reaching a plateau. The lower curve shows an approximately linear growth.
This is another indication that our model does not simply assign higher fault-proneness to larger classes, but

predicted

π<=0.65 π>0.65

actual
no fault 48 classes 12 classes 60 classes

fault
11 classes,
17 faults

42 classes,
217 faults

53 classes
234 faults

59 classes 54 classes 113 classes

Table 19: Result from 10-cross-validation of Model II

Σ

Σ
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that the coupling and inheritance measures capture a strong additional effect beyond size, that has an impact
on the fault-proneness of classes.

4.6  Threats to validity

We distinguish between three types of threats to validity for an empirical study:

• Construct validity: The degree to which the independent and dependent variables accurately measure the
concepts they purport to measure. 

• Internal validity: The degree to which conclusions can be drawn about the causal effect of the indepen-
dent variables on the dependent variables. 

• External validity: The degree to which the results of the research can be generalized to the population
under study and other research setting.

We now apply these criteria to assess the results described above.

4.6.1  Construct validity

The dependent variable we used is the probability that a fault is detected in a class during acceptance test-
ing. Assuming testing was performed properly and thoroughly, the probability of fault detection in a class dur-
ing acceptance testing should be a good indicator of its probability of containing a fault and, therefore, a valid
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measure of fault-proneness. The construct validity of our dependent variable can thus be considered satis-
factory

For construct validity of the independent variables, we have to address the question to which degree the cou-
pling, cohesion, and inheritance measures used in this study measure the concepts they purport to measure.
In (Briand et al., 1999; Briand et al., 1998a), the coupling and cohesion measures were theoretically validat-
ed against properties for coupling and cohesion measures proposed in (Briand et al., 1996b). These prop-
erties are one of the more recent proposals to characterize coupling and cohesion in an operational, and
reasonably intuitive manner. The properties are considered necessary but not sufficient, as a measure that
fulfills all properties is not guaranteed to make sense or be useful.

Of the coupling measures, the following measures fulfill all coupling properties: MPC, the ICP measures, and
the measures of the suite by Briand et al. (Briand et al., 1997b). Of the remaining measures, some measures
do not have a null value (the RFC measures, DAC and DAC’), some are not additive when two unconnected
classes are merged (CBO, CBO’, the RFC measures, DAC’).

Of the cohesion measures, only Coh, TCC and LCC fulfill all cohesion properties. The other measures are
not normalized (LCOM1-LCOM4, ICH), or not properly normalized as they make assumptions which may not
be fulfilled for all classes (LCOM5, Co). In addition, LCOM2 is not monotonic, and, as already discussed,
ICH is additive when unconnected classes are merged.

For the inheritance measures, the concepts they purport to measure are not clear. No empirical relation sys-
tems for these measures have been proposed; doing so would be desirable but it is beyond the scope of this
paper.

At this point, it is interesting to compare the construct validity of the measures and their empirical relationship
to fault-proneness, referred to as their “empirical validity”. All four combinations of theoretical and empirical
validity occur: From the theoretically valid measures, some are also empirically valid (e.g., OMMIC), some
or not (e.g., LCC). Likewise, among the measures that were not successfully theoretically validated, some
still are empirically valid (e.g., the RFC measures), others are not (LCOM1).

As we see, construct validity does not imply empirical validity, and vice versa. That is, enforcing construct
validity does not help to finding measures that are also good quality indicators. However, it helps interpreting
the results we obtain.Only when we use theoretically valid measures of coupling or cohesion can we say that
we demonstrated the impact of coupling and cohesion on fault-proneness. Also, it adds more credibility to
an underlying assumption that cannot be proven by statistical testing, namely, that the relationships we find
are not only statistical ones, but causal ones. The problem with measures that are not theoretically valid, but
still good quality indicators, is that we cannot be sure about what we are actually measuring.

The function of the measures as “design measures” is emphasized, i.e., these measures are applicable in
early stages of the development process. If these measures are found to be useful, they can be used to de-
tect problems in the design before implementation starts, thus potentially saving time and effort for rework
of the design. However, since we needed testing fault data to perform the analysis, measurement was per-
formed only after implementation was completed. If measurement had taken place, say, before implemen-
tation started, different measurement data could have been obtained because of the uncertainty inherent to
early design information (e.g., the information about actual method invocations may be uncertain before im-
plementation and method invocations are counted by CBO, RFC, MPC, OMMIC, IFMMIC, AMMIC, OMMEC,
FMMEC, and DMMEC). This in turn could have led to different results in the statistical analyses.

4.6.2  Internal validity

The analysis performed here is correlational in nature. We have demonstrated that several of the measures
investigated had a statistically and practically significant relationship with fault proneness during testing.
Such statistical relationships do not demonstrate per se a causal relationship. They only provide empirical
evidence of it. Only controlled experiments, where the measures would be varied in a controlled manner and
all other factors would be held constant, could really demonstrate causality. However, such a controlled ex-
periment would be difficult to run since varying coupling, cohesion, and inheritance in a system, while pre-
serving its functionality, is difficult in practice. Some attempts to do so are reported in (Briand et al., 1996a;
Briand et al., 1997a). On the other hand, it is difficult to imagine what could be alternative explanations for
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our results besides a relationship between coupling, inheritance depth, and the cognitive complexity of class-
es.

4.6.3  External validity

The following facts may restrict the generalizability of our results.

• The systems developed are rather small: they lie between 5000 and 14000 source lines of C++ code.

• The systems developed have a limited conceptual complexity.

• The developers are not as well trained and experienced as average professional programmers.

5.0  Conclusions
Our main goal was to perform a comprehensive empirical validation of all the object-oriented (OO) design
measures found in the literature. We wanted to understand their interrelationships, their individual impact on
class fault proneness, and, when used together, their capability to predict where faults are located. To do so,
a repeatable, complete analysis procedure is proposed for future replications and can help the comparison
of results coming from different data sets. This is a fundamental requirement if we want to build a cumulative
body of knowledge through replicated studies.

Many of the coupling, cohesion, and inheritance measures studied in this paper appear to capture similar
dimensions in the data. In fact, the number of dimensions actually captured by the measures is much lower
than the number of measures itself. This simply reflects the fact that many of the measures proposed in the
literature are based on comparable ideas and hypotheses, and are therefore somewhat redundant. 

Univariate analysis results have shown that many coupling and inheritance measures are strongly related to
the probability of fault detection in a class. In particular, coupling induced by method invocations, the rate of
change in a class due to specialization, and the depth of a class in its inheritance hierarchy appear to be
important quality factors. On the other hand, cohesion, as currently captured by existing measures, does not
seem to have a significant impact on fault proneness. This is likely to reflect two facts: (1) the weak under-
standing we currently have of what this attribute is supposed to capture, (2) the difficulty to measure such a
concept through syntactical analysis only.

Multivariate analysis results show that by using some of the coupling and inheritance measures, very accu-
rate models can be derived to predict in which classes most of the faults actually lie. When predicting fault-
prone classes, the best model shows a percentage of correct classifications about 80% and finds more than
90% of faulty classes. 

The study performed in this paper should be replicated across many environments and systems in order for
our community to draw general conclusions about what OO measurement can do to help assess the quality
of early designs and systems. It would also be interesting to investigate, in a similar fashion, the relationship
between OO design measures and other external quality attributes, such as maintainability (Briand et al.,
1996a; Briand et al., 1997a). The results above still support the idea that measurement of OO designs can
still shed light on their quality. However, as long as empirical studies remain as scarce or incomplete as they
are today, product quality measurement for OO development is likely to remain an elusive target. 
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Appendix A: Measures used in this study

Tables 20 to 22 describe the coupling, cohesion, and inheritance measures used in this study. In each table,
the column “Name” states the acronym of each measure and what it stands for. In “Definition”, we provide
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an informal natural language definition of the measures. These should give the reader a quick insight into
the measures. However, such definitions tend to be ambiguous. Formal definitions of the measures using a
uniform and unambiguous formalism are provided in (Briand et al., 1999; Briand et al., 1998a). Column
“Source” indicates the literature reference where the measure has originally been proposed.  

Name Definition Source

CBO (coupling 
between object 
classes)

According to the definition of this measures, a class is coupled 
to another, if methods of one class use methods or attributes of 
the other, or vice versa. CBO for a class is then defined as the 
number of other classes to which it is coupled. This includes 
inheritance-based coupling (coupling between classes related 
via inheritance).

(Chidamber and 
Kemerer, 1994)

CBO’
Same as CBO, except that inheritance-based coupling is not 
counted.

(Chidamber and 
Kemerer, 1991)

RFC∞ (response set 

for class)

The response set of a class consists of the set M of methods of 
the class, and the set of methods directly or indirectly invoked 
by methods in M. In other words, the response set is the set of 
methods that can potentially be executed in response to a mes-
sage received by an object of that class. RFC is the number of 
methods in the response set of the class.

(Chidamber and 
Kemerer, 1991)

RFC1
Same as RFC∞, except that methods indirectly invoked by 

methods in M are not included in the response set this time.
(Chidamber and 
Kemerer, 1994)

MPC (message 
passing coupling)

The number of method invocations in a class.

(Li and Henry, 
1993)

DAC (data abstrac-
tion coupling)

The number of attributes in a class that have as their type 
another class.

DAC´
The number of different classes that are used as types of 
attributes in a class.

ICP (information-
flow-based coupling)

The number of method invocations in a class, weighted by the 
number of parameters of the invoked methods.

(Lee et al., 1995)

IH-ICP (information-
flow-based inherit-
ance coupling)

As ICP, but counts invocations of methods of ancestors of 
classes (i.e., inheritance-based coupling) only.

(Lee et al., 1995)

NIH-ICP (informa-
tion-flow-based non-
inheritance coupling)

As ICP, but counts invocations to classes not related through 
inheritance.

(Lee et al., 1995)

Table 20: Coupling measures
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IFCAIC These coupling measures are counts of interactions between classes. 
The measures distinguish the relationship between the classes 
(friendship, inheritance, none), different types of interactions, and the 
locus of impact of the interaction.
The acronyms for the measures indicates what interactions are 
counted:

• The first or first two letters indicate the relationship (A: coupling to
ancestor classes, D: Descendents, F: Friend classes, IF: Inverse
Friends (classes that declare a given class c as their friend), O: Oth-
ers, i.e., none of the other relationships).

• The next two letters indicate the type of interaction:
CA: There is a Class-Attribute interaction between classes c and d,
if c has an attribute of type d.
CM: There is a Class-Method interaction between classes c and d,
if class c has a method with a parameter of type class d.
MM: There is a Method-Method interaction between classes c and
d, if c invokes a method of d, or if a method of class d is passed as
parameter (function pointer) to a method of class c.

•  The last two letters indicate the locus of impact:
IC: Import coupling, the measure counts for a class c all interactions
where c is using another class.
EC: Export coupling: count interactions where class d is the used
class.

(Briand et al., 
1997b)

ACAIC

OCAIC

FCAEC

DCAEC

OCAEC

IFCMIC

ACMIC

OCMIC

FCMEC

DCMEC

OCMEC

OMMIC

IFMMIC

AMMIC

OMMEC

FMMEC

DMMEC

Name Definition Source

Table 20: Coupling measures
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Name Definition Source

LCOM1 (lack of 
cohesion in meth-
ods)

The number of pairs of methods in the class using no attribute in 
common.

(Chidamber 
and Kemerer, 
1991; Hender-
son-Sellers, 
1996)

LCOM2
LCOM2 is the number of pairs of methods in the class using no 
attributes in common, minus the number of pairs of methods that do. 
If this difference is negative, however, LCOM2 is set to zero.

(Chidamber 
and Kemerer, 
1994)

LCOM3

Consider an undirected graph G, where the vertices are the meth-
ods of a class, and there is an edge between two vertices if the cor-
responding methods use at least an attribute in common.
LCOM3 is then defined as the number of connected components of 
G.

(Hitz and Mon-
tazeri, 1995)

LCOM4
Like LCOM3, where graph G additionally has an edge between ver-
tices representing methods m and n, if m invokes n or vice versa.

(Hitz and Mon-
tazeri, 1995)

Co (connectivity)
Let V be the number of vertices of graph G from measure LCOM4, 

and E the number of its edges. Then . 

(Hitz and Mon-
tazeri, 1995)
(named “C”)

LCOM5

Consider a set of methods {Mi} (i=1,...,m) accessing a set of 

attributes {Aj} (j=1,...,a). Let  be the number of methods which 

reference attribute Aj.

Then 

(Henderson-
Sellers, 1996)

Coh
A variation on LCOM5: 

(Briand et al., 
1998a)

TCC (tight class 
cohesion)

Besides methods using attributes directly (by referencing them), this 
measure considers attributes “indirectly” used by a method. Method 
m uses attribute a indirectly, if m directly or indirectly invokes a 
method  which directly uses attribute a. Two methods are called 
connected, if they directly or indirectly use common attributes.
TCC is defined as the percentage of pairs of public methods of the 
class which are connected, i.e., pairs of methods which directly or 
indirectly use common attributes. 

(Bieman and 
Kang, 1995)

LCC (loose class 
cohesion)

Same as TCC, except that this measure also considers pairs of 
“indirectly connected” methods. If there are methods m1,..., mn, such 
that mi and mi+1 are connected for i=1,...,n-1, then m1 and mn are 
indirectly connected. Measure LCC is the percentage of pairs of 
public methods of the class which are directly or indirectly con-
nected.

(Bieman and 
Kang, 1995)

ICH (information-
flow-based cohe-
sion

ICH for a method is defined as the number of invocations of other 
methods of the same class, weighted by the number of parameters 
of the invoked method (cf. coupling measure ICP above). The ICH 
of a class is the sum of the ICH values of its methods.

(Lee et al., 
1995)

Table 21: Cohesion measures
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In order to compare how these measure relate to size we also consider a number of size measures defined
in Table 23.    

Name Definition Source

DIT (depth of inheritance tree)

The DIT of a class is the length of the longest path 
from the class to the root in the inheritance hierar-
chy.

(Chidamber and 
Kemerer, 1991; 
Chidamber and 
Kemerer, 1994)

AID (average inheritance 
depth of a class)

AID of a class without any ancestors is zero.
For all other classes, AID of a class is the average 
AID of its parent classes, increased by one.

(Henderson-Sellers, 
1996)

CLD (class-to-leaf depth)
CLD of a class is the maximum number of levels in 
the hierarchy that are below the class.

(Tegarden et al., 
1992)

NOC (number of children)
The number of classes that directly inherit from a 
given class.

(Chidamber and 
Kemerer, 1991; 
Chidamber and 
Kemerer, 1994)

NOP (number of parents)
The number of classes that a given class directly 
inherits from.

(Lake and Cook, 
1994; Lorenz and 
Kidd, 1994)

NOD (number of descend-
ents)

The number of classes that directly or indirectly 
inherit from a class (i.e., its children, ‘grand-chil-
dren’, and so on).

(Lake and Cook, 
1994; Tegarden et 
al., 1992)

NOA (number of ancestors)
The number of classes that a given class directly 
or indirectly inherits from.

(Tegarden et al., 
1992)

NMO (number of methods
overridden)

The number of methods in a class that override a 
method inherited from an ancestor class.

(Lorenz and Kidd, 
1994)

NMI (number of methods 
inherited)

The number of methods in a class that the class 
inherits from its ancestors and does not override.

(Lorenz and Kidd, 
1994)

NMA (number of methods 
added)

The number of new methods in a class, not inher-
ited, not overriding.

(Lorenz and Kidd, 
1994)

SIX (specialization index) SIX is NMO * DIT / (NMO+NMA+NMI)
(Lorenz and Kidd, 
1994)

Table 22: Inheritance related measures

Name Definition

Stmts
The number of declaration and executable statements in the 
method of a class.

NM (Number of methods)
The number of all methods (inherited, overriding, and non-inherited) 
methods of a class. This 

NAI (Number of attributes)
The number of attributes in a class (excluding inherited ones). 
Includes attributes of basic types such as strings, integers.

NMpub (Number of public meth-
ods)

The number of public methods implemented in a class.

NMNpub (Number of non-public 
methods)

The number of non-public (i.e., protected or private) methods imple-
mented in a class.

NumPara (Number of parameters)
The sum of the number of parameters of the methods implemented 
in a class.

Table 23: Size measures
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