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Abstract 
 
The software industry needs means to evaluate software products and compare development 
and implementation technologies in the context of actual projects. Solutions need to be cost-
effective but also technically sound. This paper presents a methodology to combine two 
software product evaluation techniques: measurement of structural design properties, and 
evaluation of change scenarios. The goal is to use these two approaches together so that they 
can address each other’s limitations. 
In a case study in the context of the European aerospace industry, this combined methodology 
was used to assess the impact of choice of programming language and distribution 
technology on the maintainability of resulting systems. It encompasses the comparison of 
C++ and Java, as well as distribution/communication technologies such as IPC via sockets, 
and CORBA implementation. Lessons learned in terms of benefits and limitations are 
presented. The study shows the usefulness of the approach presented but it is also clear that it 
needs to be used in combination with other means of evaluation and with a critical mind, as 
for any engineering solution. 
 
1 Introduction 
 
In many practical situations, we would like to be able to analyze a software product and assess 
its quality, e.g., its maintainability [ISO97]. A number of approaches have been taken, which 
range from measuring code or designs [BWIL99, CDK98] to analyzing architectures from a 
qualitative standpoint [BCK98]. The former approaches are based on measuring structural 
properties (e.g., control flow complexity, coupling), through static analysis, that are believed 
to be related to quality attributes such as maintainability. A small number of studies have tried 
to establish such relationships [BWL99]. Methods based on analyzing architectures, the most 
well-known being the Software Architecture Analysis Method (SAAM), are based on 
identifying relevant, representative scenarios (e.g., change scenarios for maintainability) and 
assess the impact of these scenarios on the system in terms, for example, of change effort and 
difficulty.  
 
This paper presents a practical method to integrate the two abovementioned approaches. In 
fact, as we will see below, they are complementary and this is the fundamental motivation of 
our work. For example, in the context of maintainability, the SAAM analysis indicates which 
system parts are likely to be changed in the future, and the static analysis indicates how well 
these parts support the changes. We then define “Change Difficulty Indices”, which combine 
this information, and will be used as maintainability indicators. We illustrate the application 
of the method through a case study that took place at Astrium GmbH (formerly 
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DaimlerChrysler Aerospace) in Germany. Though this study focuses on maintainability, many 
aspects and lessons learned are expected to be relevant to other quality aspects. To this end, 
we have defined the procedure in a general, reusable manner.  
 
The paper is structured as follows. We first describe the problem, the case study motivations 
and settings. We provide a brief overview of the methodology we introduce and then, in the 
next section, provide the most important details regarding its implementation. In Section 4, 
we report the case study results in a structured manner and discuss them. Section 5 concludes 
the study by reporting lessons learned, both in terms of the methodology and the case study 
results.  
 
 
2 Case Study Description 
 
This section presents the motivations for the case study, some aspects of the case study 
design, and the systems under study.  

2.1 Motivations 
Object-oriented component technology is still seldom used for embedded software 
development in the aerospace domain. Astrium GmbH (formerly DASA) and the European 
Space Agency (ESA) wanted to determine the relative impact of using languages like C++ 
(which is well established) and Java (under consideration) on performance, maintainability, 
and reusability. In addition, they wanted to investigate the use of distribution technologies 
such as CORBA (Common Object Request Brokers Architecture) and inter-process 
communication (IPC) via sockets. In other words, it was decided to compare C++ and Java in 
different distribution contexts: 
• no distribution (multithreaded process running in a single image) 
• distributed (heavyweight) processes communication via sockets (IPC libraries) 
• distributed (heavyweight) processes communicating via a CORBA ORB (Inprise's 

Visibroker for C++, the ORB that is part of the JDK1.1 for Java). 
 
The key quality aspects that were selected as being the focus of the study are: performance 
(CPU usage, memory consumption), maintainability, and reusability.  
 

2.2 Design of the Case Study 
 
One of the most straightforward and inexpensive ways to answer the questions above would 
be to compare different projects using different programming languages and distribution 
technologies. The main problem is that it would be difficult, if at all possible, to compare such 
systems, as they would differ in size, complexity, design strategy, programming style, usage, 
development cycles over the system's lifetime, and so on. In addition, as Java and the 
distribution technologies in question are not widely used yet in onboard space software, it 
would be difficult to find such projects in the first place. Because of the strategic importance 
of taking decisions regarding programming languages and distribution technologies, ESA 
decided to finance a study that would replicate the development of the same system six times, 
namely, two programming languages times three distribution contexts.  
 
It was, however, decided, that the system should be small, though representative (see next 
section). It was also ensured all implementations would be based on the same high-level 
design in order to ensure that differences in low-level design would be due to differences in 
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programming language and distribution technology. This was achieved by running the study 
as follows: 
 

• The three Java systems were implemented by one professional developer over a course 
of about three months. A second professional developer then developed the C++ 
versions, using the same system high-level design as the Java systems.  

 
• The implementations in a particular language are not independent of each other; the 

IPC and CORBA versions are derived from the multithreaded version with additional 
code to manage the separate heavyweight processes and the communication between 
them via sockets or an ORB. 

 

2.3 Systems under Study 
As mentioned above, it was important to develop systems that are representative of the 
application domain under study: on-board space software systems. A typical system consists 
of a service library, which provides certain generic functionalities to support one or more 
flight application programs, to operate the specific onboard hardware configuration. 
 
The functionality offered by the service library includes:  
 

• Acquisition of sensor values 
• Execution of telecommands (commands sent from ground control) 
• Sending actuator commands 
• Monitoring of sensor values 
• Generation of housekeeping telemetry  
• Generation of report telemetry 

 
To provide a simple but complete example of an on-board system, we also need flight 
applications to use these basic functionalities. The flight application to be developed in this 
case study is a Thermal Control System (TCS) to control and regulate the onboard 
temperature. Onboard payloads emit heat that is absorbed by a radiator. The TCS controls the 
temperature by adjusting the amount of coolant that is pumped through the radiator. The TCS 
implements the following functions: 

• TCS activation: starts all the processes of the TCS system, switch on hardware, etc. 

• TCS temperature control: executes a closed loop control of temperature, temperature 
adjustment. 

• Failure Detection, Isolation, Recovery, e.g., switch to backup pump if the main pump 
fails, switch off payloads. 

• Change of requested temperature in the TCS. 

• TCS deactivation. 
 
The underlying hardware of the services library is a Fault Tolerant Computer (FTC) with 
typical on-board functionally like hardware redundancy, MIL-Bus Interface, and so on. It is 
running on a real-time OS such as the UNIX-compatible VxWorks. The overall architecture 
for the onboard system is depicted in Figure 1. 
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Figure 1 On-board system architecture 

 
 
For this case study, however, the development environment was a Windows NT4.0 platform. 
A software simulator was developed as a substitute for the physical interfaces, which provide 
access to sensors and commands, telecommands, and telemetry.  
 

2.4 Assessment Method Overview 
 
The assessment method is composed of three parts: (1) Analysis of the structural properties of 
the design (e.g., based on code static analysis), (2) The development and analysis of scenarios 
based on SAAM [BCK98], and (3) an integration of (1) and (2). 

2.4.1 Static analysis 

The structural properties of a system, such as class coupling, affect the ease with which the 
system can undertake maintenance activities, i.e., its general modifiability. We will perform a 
static analysis of source code to measure and compare the structural properties of the 
software. The type of structural properties we measure is based on previous empirical studies 
and, in particular, one study that looked at the impact of coupling on ripple effects when 
performing changes [BWL99]. As described below, our structural measures will span 
coupling, complexity, and size, as we expect they may all affect the cost of maintenance.  

2.4.2 Scenario-based evaluation  

The software architecture analysis method (SAAM) [BCK98] is, to our knowledge, the most 
advanced and operational method for analyzing the modifiability of a software architecture. 
Moreover, it is the only method for which a number of case studies have been reported 
[BCK98].  

The key idea of SAAM is that whether a software architecture will prove to be modifiable or 
not depends on the types of modification that the system is likely to undergo in the future, and 
how the architecture supports these changes. 
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Scenarios are the means by which the likely future changes are captured. Scenarios are short 
descriptions of a typical usage of the system. They are similar to use cases as described in the 
UML [UML1.3]. The scenarios describe a representative set of changes, in functional or non-
functional requirements, that are deemed to be likely to occur in the future. 

After a set of likely change scenarios is identified, it is determined for each scenario how the 
architecture must be modified to support the scenario, i.e., which parts of the system have to 
be modified, added, or deleted, and how extensive are these changes. This will help identify 
“hot spots” in the architecture, for instance, modules that will undergo frequent and extensive 
changes in the future. 
SAAM is typically applied in early stages of the development, at the architectural level. In 
this study, the scenario-based evaluation is carried out at a lower level, the implementation 
level. Changes to the system will be evaluated at the class level. This is possible because the 
fully implemented systems are available at the time the evaluation is carried out.  
As SAAM uses a specific set of scenarios, we analyze the ‘specific modifiability’ of the 
system, in the context of those scenarios. This contrasts with the ‘general modifiability’ 
yielded by the static code analysis. We will see below that the two are complementary and 
need to be used together.  

2.4.3 Integrating SAAM and Structural Measurement 

One weakness of the static analysis of structural properties is that they do not discriminate 
what parts of the system will change from stable classes. The results from the SAAM analysis 
provide us with a way to weight the measurement values from the static code analysis. The 
SAAM analysis will indicate which classes are likely to be changed in the future, and the 
static analysis will provide indications on the modifiability of these classes.  

When static measurement is performed in isolation, classes with high complexity or coupling 
are generally considered difficult to maintain or reuse. With the SAAM evaluation, we can 
put this into context. A class with high complexity or coupling may cause no problems if it is 
unlikely to be changed or reused in the future. On the other hand, for a class that is likely to 
undergo frequent changes, even moderate coupling or complexity will result into an additional 
maintenance or reuse cost. 

Our analysis strategy integrates the static analysis and the SAAM evaluation: For each of the 
six systems, we define a Change Difficulty Index (CDI) for each scenario, which incorporates 
the extent of changes to classes, and their associated coupling, complexity, and size. A 
comparison of the CDIs, at the class level, will provide an insight into the relative 
maintainability and reusability of the six systems. Details on this will be provided in the 
section. In the following section, we describe each step in more detail. 
 
3 Implementation Strategy 
 

This section describes in more detail how we implemented the method described above in the 
context of our study, though many aspects can be generalized to other situations. Our case 
study results will then be described in the following section in order to further illustrate the 
method’s steps.  



6 

3.1 Develop Scenarios 

In this step, taking again our maintainability example, the system stakeholders1 identify a set 
of representative change scenarios, which describe changes of functional or non-functional 
requirements that are likely to occur in the future. 

Similarly, reuse scenarios could be identified by trying to determine what classes or class 
clusters would likely be reused in other flight applications or spacecrafts. However, quality 
standards such as ISO9126 do not make a clear distinction between maintainability and 
reusability [ISO97]. These qualities are concerned with the ease with which a system can be 
modified to suit changed requirements or changes in the environment, respectively. Hence, 
reusability and maintainability can be seen as specific forms of modifiability, which will be 
assessed here. We will therefore have one set of scenarios covering all aspects of 
modifiability in our case study.  
The number of scenarios should be large enough to be representative, though this is inherently 
subjective. Each scenario, once defined, will be subjected to analysis as described below.  

3.2 Analyze Scenarios 

For each scenario, the goal is to identify necessary changes to the system at the class level, 
and estimate the cost of performing these changes, or the extent of change to the class (what 
percentage of the class implementation that will need to be modified). 
For each class, we can thus determine the number of scenarios that affect the class. This gives 
an indication of how likely the class is to change in the future. These classes should be 
designed for ease of maintenance and reuse (e.g., low coupling, complexity, size), and will be 
of key interest in the next step, focusing on static analysis. 
Other aspects of the scenarios’ analysis (see [BCK98]) provide relevant insight in the general 
suitability of the selected architecture but are not our prime focus in this paper: 

• How many classes does a given scenario affect? Here, we analyze the locality of 
changes. When a scenario requires several classes to be changed, it is more difficult to 
maintain consistency between all the classes. In addition, in the context of space 
software, all affected modules have to be updated, which puts more stress on the 
restricted bandwidth of space communication links.  

• Scenario interactions. Two scenarios interact if they necessitate a change to the same 
class. Interaction of similar scenarios is fine as this indicates high functional cohesion 
of the classes. Interaction of fundamentally different scenarios may be a problem (low 
functional cohesion, separation of concerns). 

3.3 Perform Structural Measurement  
Static analysis is performed to analyze structural properties of classes and assess how 
amenable specific classes are to change. The structural properties of a class are considered 
indicative of the cognitive complexity of the class. By cognitive complexity we mean the 
mental burden of the persons who have to deal with the class (developers, inspectors, testers, 
maintainers, etc.). We assume that it is the, sometimes necessary, high cognitive complexity 
of a class which causes it to display undesirable external qualities, such as decreased 
maintainability and testability, or increased fault-proneness. Figure 2 summarizes the 
relationship between structural class properties, cognitive complexity, and external quality. 

                                                
1 These may include analysts, developers, maintainers, marketing, and management. 
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Figure 2: Relationships between structural class properties, cognitive complexity, and external 
quality  

First, we have to identify internal quality attributes of the source code that have an impact on 
the maintainability and reusability of the system classes. A set of well-understood internal 
attributes along with their hypothesized impact on maintainability and reusability are 
summarized in the following table. 
 

Internal Attribute Maintainability Reusability 

Coupling Modifications are more difficult to perform 
because imported services must be 
understood 
Ripple effects of changes: classes with high 
import coupling are more likely to be affected 
by ripple effects, changing classes with high 
export coupling is more likely to trigger 
ripple effects leading to changes in other 
classes 

Adaptation is more difficult: 
functionality of used classes (import 
coupling) must be provided in the 
context of reuse 

Complexity Changes are more difficult to perform 
because of the higher cognitive load involved 
in understanding the class to be modified 

Adaptation more difficult because of 
higher cognitive load 
Certification for reuse is more difficult 

Size Upload of changed class more expensive Certification for reuse is more difficult 

Table 1 Internal quality attributes and their impact on maintainability and reusability 

These internal quality attributes in Table 1 have been selected because 

• There is empirical evidence for the impact of measures of these attributes on external 
system qualities, such as the probability of ripple effects [BWL99], which is one major 
aspect of decreased maintainability, or fault-proneness (e.g., [BDPW98], [BWIL99], 
[CDK98]). In other words, the measures of these attributes have consistently been 
shown to be quality indicators, across a number of case studies. Because external 
quality attributes, such as modifiability and fault-proneness, are all symptoms of the 
underlying cognitive complexity of classes, we base our choice of structural measures 
here on all these results, hoping to capture most of the relevant structural properties 
related to the general modifiability of the classes. 

• We have a good understanding of the theoretical properties of measures for these 
attributes. This helps determine that a proposed coupling measure, for instance, is 
actually measuring what it purports to measure. For the selected internal quality 
attributes, operational, formal definitions exist [BMB96], against which proposed 
measures of these attributes can be checked.  

Furthermore, for each of these internal quality attributes, measures were identified that  

• can be collected automatically from source code, 

• are applicable to C++ and Java and the different communication technologies 
investigated here. 
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These measures are presented in the following subsections. We do not claim that our set of 
internal quality attributes is complete, nor that the measures of the chosen internal qualities 
capture all relevant dimensions. For instance, cohesion is a well-known structural property 
that is not used here, because existing measures of cohesion showed inconsistent trends in 
their impact on external quality attributes such as fault-proneness [BDPW98, BWIL99]. For 
the same reason, certain dimensions of coupling that take inheritance into account, and are 
regularly observed in OO systems, were not considered here. As long as these inconsistent 
trends are not well understood, it is difficult or unsafe to draw conclusion from such 
measurements.  

But in general, the strategy at this point of our methodology should be to try to capture all 
dimensions that are considered (or have shown to be) related to the quality aspect of interest 
(e.g., maintainability). 

3.3.1 Coupling Measures 

Our coupling measures distinguish the direction or locus of coupling (import and export 
coupling), and various coupling mechanisms (e.g., method invocation, aggregation). These 
were shown to be widely orthogonal dimensions of coupling in [BDWP98]. 

• Import coupling via method invocations. These are measures that count, for a class, 
the number of external method invocations, or the number of invoked classes. 

• Import coupling via aggregation. These are measures that count, in a class, attributes 
that have another class as their type. 

Export coupling measures were found to be related to fault-proneness, but to a much lesser 
extent. These are measures that count how often a class is being used by other classes.,The 
frequency with which a class is being used by other classes may not be indicative of the 
cognitive complexity of a class: a class could be used by many other classes, but still be 
constructed in a simple fashion. However, the modification of a class with high export 
coupling is critical, because it may require follow-up modifications that potentially impact 
large parts of the system. Therefore, export coupling measures will be relevant in this study. 
 
Name Description 

CAIC Class-Attribute interaction Import Coupling. For a class C, this measure counts the number of 
attributes (data members) in class C, whose type is of another class D≠C, or derived from another 
class D (pointer to an instance, array, reference,… ) 

CMIC Class-Method interaction Import Coupling. For a class C, this measure counts the number of 
parameters of methods of C, whose type is of another class D≠C. 

SIM Statically Invoked Methods. For a class C, the number of methods of other classes that are invoked 
by methods of C. Only static invocations are considered. 

PIM Polymorphistically Invoked Methods. For a class C, the number of methods of other classes that 
can, because of polymorphism and dynamic binding, be invoked by methods of C.  

CAEC Class-Attribute-interaction Export Coupling. For a class C, this measure counts the number 
attribute of all other classes D≠C that have class C as their type. 

CMEC Class-Method-interaction Export Coupling. For a class C, this measure counts the number of 
parameters of all other classes D≠C whose type is class C. 

SIMEC Statically Invoked Methods – Export Coupling. For a class C, the number of method invocations in 
all other classes D≠C of any method of class C. Only static invocations are considered. 

PIMEC Polymorphistically Invoked Methods – Export Coupling. As SIMEC, except that polymorphism 
and dynamic binding is taken into account. 

Table 2 Coupling Measures Selected 
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3.3.2 Complexity Measures 

The complexity measures to be used in this study focus on the relationships between elements 
of a class (i.e., its methods and attributes). Empirical studies have shown that the amount of 
method invocations within a class has an impact on the fault-proneness of the class 
[BWDP99]. Likewise, accesses to attributes by the methods of the class introduce state 
dependencies between the methods, which causes the class to become more difficult to 
modify. 
The measures of relationships between methods and attributes within a class will be 
complemented by traditional complexity measures from structural programming. Such 
measures were shown to be indicators of cognitive complexity also in object-oriented 
programming [Eva97]. These are measures based on the cyclomatic complexity of the 
algorithms of the class methods, for instance, WMC (weighted method complexity, [CK94]). 
 
WMC Weighted Method Complexity: McCabe’s Cyclomatic Complexity Measure, summed over all 

methods of the class. 

ICMI_D Intra-class method invocations – direct. The number of invocations of methods within a class C. 

ICMI_ID Intra-class method invocations – indirect: The number of direct or indirect method invocations 
within a class C. 

ICAR Intra-class attribute references. The number of references to attributes of class C by methods of 
class C. 

Table 3 Complexity Measures Selected 

3.3.3 Size Measures 

The size of a class is known to increase the cognitive load on the person who has to develop 
or modify the class, which, for instance, causes larger classes to be more fault-prone 
[BWDP99]. We will measure the size of classes in terms of the number of methods, the 
number of attributes, and the number of executable and declaration statements in the class. 
These measures are equally applicable to C++ and Java, and they are comparable because  

• the C++ and Java syntax and language definition are similar, statements in C++ and Java 
are at comparable levels of abstraction, and 

• the libraries used (JDK for Java, RogueWave's Tools.h++, Threads.h++, and Inprise's 
VisiBroker for C++) also offer services at the same levels of abstraction. 

 
 

LOC Non-blank non-comment-only source lines of code 

NMImp Number methods implemented in the class (excludes inherited methods, but 
includes redefined or overriding methods) 

NAImp Number of attributes (non-inherited ones only) 

Table 4 Size Measures Selected 

3.3.4 Data Collection 

A static source code analyzer, generated with the Sema Group's FAST parser technology 
[Sem97], was used to collect the code measures presented above. The analyzer was designed 
and developed by Fraunhofer IESE, Germany, to ease the implementation of new measures 
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and to be, to the maximum extent possible, independent of the specific programming language 
under study.  

3.4 Integration of Scenario Analysis and Structural Measurement 

In this final step, we combine the results from the scenario evaluation with the results from 
the static source code analysis. For each system, and for each scenario, we define a change 
difficulty index (CDI), which accounts for the estimated extent of the changes, and the 
coupling, complexity, and size measures of the classes affected by the change. 
To calculate the change difficulty indices, we first perform a principal component analysis 
(PCA, [Dun89]) on the measures, to identify a minimal and non-redundant subset of the 
selected measures that captures most of the variability in the dataset. The goal is to ensure we 
do not account several times for the same structural property in our analysis. As a result from 
PCA, we obtain a number of orthogonal structural dimensions (or domains), characterized by 
a subset of measures. We then pick one measure from each dimension to account for the 
general modifiability of classes. Further details will be provided below while presenting the 
case study.  

For each scenario, we weight each selected measure for each class by the extent of change it 
undergoes, and take the sum of the weighted measure values over all classes in the system. 
Thus, a change difficulty index for a given scenario s and a selected measure m is of the form  

∑
=

=
n

j
jj CmsCwmsCDI

1

)(),(),(  

where C1,… ,Cn are the classes of the system, w(Cj,s) is the extent of change in class Cj for 
scenario s, and m(Cj) is the value of structural class property measured by m, obtained for 
class Cj. 
The definition of the CDI is based on the idea that ‘undesirable’ structural class properties 
such as high coupling, complexity, or size, (resulting in high m(Cj) value), are acceptable if 
the class is not likely to undergo modifications (low w(Cj,s)) value). Similarly, extensive 
changes to a class are acceptable if the class is well designed for it (low coupling, complexity, 
size, and hence low m(Cj) value). However, when extensive changes and high coupling, 
complexity, or size coincide, this is penalized as it causes high CDI values. 
As a result, we will have, for each system, a distribution of change difficulty indices per 
domain measurement and scenario. Such distributions are then the basis for comparing 
systems as they capture, for expected change scenarios, the extent and complexity of 
performing the changes. We use the case study below as an opportunity to provide further 
details on the analysis procedure.  
 
4 Case Study Results 
A set of ten change scenarios has been identified by a group of stakeholders (developers, 
project managers at ESA and Astrium GmbH), to capture representative, likely future changes 
(new functional requirements) for the system specifications under consideration. For each 
scenario, the system developers determined how each of the six systems had to be modified to 
support the change. For each affected class, the extent of the change to the class was 
estimated. The change scenarios we identified are briefly described in Section 4.1 and the 
scenarios’ analysis results are summarized in Section 4.2. Note that the selected scenarios 
capture both aspects of maintenance (functional requirements enhancements) and reuse (use 
of the software in different contexts). 
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4.1 Selected Scenarios  

We briefly present the ten change scenarios that were obtained following the SAAM process. 
In the context of our case study, the study participants felt these changes were representative 
of what could be expected in the foreseeable future. It also fulfilled the requirements to 
perform the statistical analysis required by our procedure. As the scenario evaluation carried 
out here is fine-grained, the description of the scenarios given here can only give the reader a 
rough idea of their nature, as a detailed understanding would require in-depth knowledge of 
the system. 

• S1: Support for new functional forms for calibration functions. Calibration functions 
map raw measurement value obtained from a sensor onto a meaningful scale. 

• S2: Better FDIR (fault detection, isolation, recovery) capabilities: more complicated 
preconditions to start an FDIR need to be specified. 

• S3: Change in the on-board-hardware configuration: add or remove a piece of 
hardware in the TCS. The system must not be taken down for reconfiguration. 

• S4: Adding a flight application program that performs completely new operations 
using the existing, unchanged hardware while the system is running.  

• S5: Adding a new telecommand to modify a calibration constant while the system is 
running.  

• S6: The system is to be run on a different operating system. Several assumptions about 
availability of a Java Virtual Machine and third party class libraries for the new 
platform were made. 

• S7: Instead of the simulated HW interface, connect to a real subsystem based on the 
MIL STD protocol – without change to configuration data tables.  

• S8: Connection to a real subsystem based on the MIL STD protocol – with changes to 
the configuration data tables.  

• S9: Application of the service layer in a manned space system (implies two 
destinations for telemetry data and two sources of control data). 

• S10: Adding redundancy support for the service layer to ensure continuous system 
operation. 

4.2 Analysis of Scenarios 

We list the system classes that are affected by each scenario, give a description of the change, 
and an estimate how extensive the change is. The extent of change is expressed as a 
percentage of the class implementation that needs to be modified. Since in practice an actual 
percentage cannot be estimated in a reliable and efficient manner, we distinguish four levels 
(L) change extent: Less than 10% (L1), 10-25% (L2), 25-50% (L3), 50-100% (L4). 
In Table 5, we list all classes that are affected by at least one of the above scenarios. Columns 
“Lan.”, “Dist..”, and “Class Name” indicate the language (C++ or Java, or “all” when the 
changes affect both languages equally), distribution technology (IPC, CORBA, or all , i.e., 
Threaded, IPC and CORBA versions) and the changed classes’ names. 
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Lan. Dist. Class Name S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 
all CORBA CORBA-IDL   L1 L1 L1      
C++ all New class  L4  L4   L4 L4   
java all New class   L4     L4 L4   
C++ all ool.config.CDTTable L1  L4   L1  L1   
java all ool.config.CDTTable L1  L4     L1   
all all ool.config.ConfigurationDataTableConstants L1       L1   
all all ool.config.GlobalUtilities          L1 
c++ all ool.config.Jproperties      L1     
all all ool.config.MonitoringTableConstants  L1         
all all ool.config.PacketDescriptionTableConstants         L1  
all all ool.service.CsvDataBase      L1     
c++ all ool.service.CsvEntry      L1     
java all ool.service.CsvTable      L1     
c++ all ool.service.DataPoolAccessor      L1    L1 
java all ool.service.DataPoolAccessor          L1 
c++ all ool.service.GroundConnection      L2   L3  
java all ool.service.GroundConnection         L3  
c++ all ool.service.MonitorTable      L3     
java all ool.service.MonitorTable      L1     
c++ all ool.service.SubsystemController   L4   L3 L1 L2   
java all ool.service.SubsystemController   L4   L1 L1 L2   
c++ all ool.service.SubsystemHandler   L4   L2     
java all ool.service.SubsystemHandler   L4   L1     
all all ool.service.TCExecution   L1 L1 L1      
all all ool.service.TCExecutor   L1 L1 L1      
c++ all ool.service.TMFormatter   L4   L2   L2  
java all ool.service.TMFormatter   L4      L2  
all all ool.service.TMGenerator   L4   L1     
all all ool.service.api.AnalogMeasurement L3    L1      
c++ all ool.service.api.AutomatedProcedure    L2  L2     
java all ool.service.api.AutomatedProcedure    L2  L1     
java all ool.service.api.AutomatedProcedure.Code    L2       
c++ all ool.service.api.AutomatedProcedureCode    L4        
c++ all ool.service.api.ServiceManager L1 L1 L4 L1  L1    L2 
java all ool.service.api.ServiceManager L1 L1 L4       L2 
c++ CORBA ool.service.corba.SystemControlClient      L1    L4 
java CORBA ool.service.corba.SystemControlClient          L4 
all CORBA ool.service.corba.SystemControlServer   L1 L1 L1      
all CORBA ool.service.corba.TCExecutor   L1 L1 L1      
all IPC ool.service.ipc.SubsystemHandler          L4 
all IPC ool.service.ipc.SystemControl   L1 L1 L1      
c++ IPC ool.service.ipc.SystemControlClientConnection      L2     
java IPC ool.service.ipc.SystemControlClientConnection           
c++ IPC ool.service.ipc.SystemControlServer   L1 L1 L1 L1     
java IPC ool.service.ipc.SystemControlServer   L1 L1 L1      
c++ IPC ool.service.ipc.TCExecutor   L1 L1 L1 L1    L4 
java IPC ool.service.ipc.TCExecutor   L1 L1 L1     L4 
c++ IPC ool.service.ipc.TMGenerator      L1    L4 
java IPC ool.service.ipc.TMGenerator          L4 
c++ all ool.service.utils.BoundedQueue      L4     
c++ all ool.service.utils.ObjectPool      L4     
java all ool.service.utils.ObjectPool      L1     
c++ all ool.service.utils.TickGenerator      L4     
c++ all ool.service.utils.Timer      L4     
c++ all ool.tcs.PayloadActivation    L2       
c++ all ool.tcs.PumpFDIR    L2       
c++ all ool.tcs.TemperatureControl    L2       

Table 5 Interactions between scenarios and classes 

For each class, we indicate by which scenarios it is affected, and the estimated extent of the 
modification for each scenario (columns S1 to S10). 

A number of qualitative observations can be drawn from the table: 

• Comparing C++ and Java systems. Only scenarios S4 and S6 reveal differences 
between the C++ and Java systems. For all other scenarios, the evaluation of 
corresponding Java and C++ implementations is identical. This is due to the fact that 
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the system structure and distribution of functionality is almost identical across 
corresponding C++ and Java implementations. Hence both versions require similar 
changes to accommodate a given scenario. For scenarios S4 and S6, the availability of 
specific language features of Java (runtime replaceability of classes, write-once-run-
anywhere plus standardized libraries of the JDK) result in different technical solutions 
which are, in terms of modifiability, favoring the Java implementations. 

• Comparing distribution/communication technologies. For the selected set of 
scenarios, the IPC and CORBA implementations show no advantages over the 
Threaded implementations. Scenarios S3, S4, S5, S6, and S10 impose additional 
maintenance effort for the classes in service.corba and service.ipc. In all other 
scenarios, the evaluation of the IPC and CORBA implementations is identical to the 
respective Threaded implementation. This result is largely due to the narrow focus of 
the investigated systems: they are small and can conveniently run on a single machine. 
The advantages of distributed solutions will very likely become more evident when 
dealing with larger flight application systems. 

As mentioned above, a SAAM evaluation typically includes additional analyses: scenario 
interaction (a class is affected by two or more different scenarios), and scenario spread (a 
scenario affects two or more classes). 

• Scenario interaction. Most classes are affected by one or two scenarios. 12 classes 
are affected by three scenarios, eight classes are affected by four scenarios, and class 
ServiceManager of the C++ implementation is affected by five scenarios. The 
presence of scenario interaction may indicate a problem if the scenarios are inherently 
different, as this hints at low functional cohesion – the class may be overloaded with 
several, distinct functionalities. The scenarios can be “incompatible” and 
implementing two changes from different scenarios may be difficult or lead to 
unforeseen side effects. During an architecture evaluation, if extreme scenario 
interactions are discovered, design alternatives should be considered to alleviate their 
potentially harmful effects. 

• Scenario spread. The impact of most scenarios is spread over several classes, but 
these classes are then usually restricted to one or two subsystems. This indicates that 
the most important design decisions are encapsulated into a small part of the system. 
Scenarios S3, S4, and S6 display a large spread, each affecting more than ten classes. 

 

4.3 Static Measurement Results 

A static analysis of the source code of each system version was performed to measure their 
structural properties, using the measures introduced in Section 3.3. The measurement results 
are considered here to be only an intermediate step, providing the necessary input the to the 
calculation of change difficulty indices. Appendix A summarizes the descriptive statictics 
including mean, minimum, maximum values, and standard deviation for all measures 
considered. 

The Java versions have one class less than their corresponding C++ versions. Other than that, 
as expected since the same high-level design was used, there is a direct mapping between 
classes in corresponding C++ and Java systems. 

- There are, however, some differences in the measurement values for corresponding Java 
and C++ systems. In terms of LOC, the Java systems are about 25% smaller than the C++ 
systems, and the Java systems have about 10% less attribute and aggregation coupling. 
The differences in size are due to the C++ header files, which contain the class definitions, 
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and are a source of redundancy. Also, memory management has to be explicitly dealt with 
by the developers in C++, whereas in Java this is taken care of by an automatic garbage 
collection mechanism. 

With respect to the other measures, differences are mostly within +/- 10%. Again, this reflects 
that the corresponding implementations are very close (almost identical system structure and 
communication paths).  

When comparing the versions of the same language, but different distribution/communication 
technologies, the threaded implementations have lower coupling, complexity, and size than 
the CORBA implementations, which in turn, have lower coupling, complexity, and size than 
the IPC implementations. Threaded implementations therefore show an advantage in terms of 
general modifiability.  
 

4.4 Change Difficulty Indices 

In this final step, we combine the results from the scenario and static source code analyses. 
For each system, and for each scenario, we define change difficulty indices (CDIs), which 
incorporate the estimated extent of the changes, and the coupling, complexity, and size 
measures of the classes affected by the change. In this section, we illustrate in detail how 
CDIs are computed and used.  

4.4.1 Principal Component Analysis 

If a group of variables in a data set (such as the coupling, complexity, and size measures we 
collected for the six systems) are strongly correlated, these variables essentially measure the 
same underlying dimension (i.e., property) of the class to be measured. It is necessary to 
identify and eliminate such redundancy, so that no single dimension inadvertently receives a 
higher weight in the subsequent analyses. 

Principal component analysis (PCA) is a standard technique to identify the underlying, 
orthogonal dimensions that explain relations between the variables in a data set [Dun89]. 
Principal components (PCs) are linear combinations of the standardized variables. The sum of 
the squares of the coefficients of the standardized variables in one linear combination is equal 
to one. PCs are calculated as follows. The first PC is the linear combination of all 
standardized variables that explains a maximum amount of variance in the data set. The 
second and subsequent PCs are linear combinations of all standardized variables, where each 
new PC is orthogonal to all previously calculated PCs and captures a maximum of the 
remaining variance under these conditions. 

Usually, only a subset of variables has large coefficients and therefore contributes 
significantly to the variance of each PC. The variables with high coefficients help to identify 
the dimension the PC is capturing, but this usually requires some degree of interpretation. The 
dimensions the PCs are capturing are also referred to as the domains of the data set. 

All six systems were merged into one data set, on which then the PCA was performed. We 
also performed PCA 

- on each individual system separately, 

- on the three C++ systems, and 
- and on the three Java systems, 

to verify whether the distribution/communication technology and/or programming language 
has an impact on the dimensions that are spanned by the selected structural measures. 
However, in each case, we arrived at the same interpretations of the PCs as those obtained 
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from the complete data set. That is, the dimensions that are spanned by the measures used 
here are not influenced by the used distribution/communication technology, or by the 
programming language. We can therefore conclude that the PCs below can be observed and 
are meaningful in all six systems under study. 

PCA identified four orthogonal dimensions that capture 75% of the variance of the data set. 
The rotated components are presented in the table below. 
 

Princ. Comp. PC1 PC2 PC3 PC4 
EigenValue: 5.6788 2.6098 1.6456 1.2668 
Percent: 37.8586 17.3986 10.9704 8.4455 
CumPercent: 37.8586 55.2572 66.2276 74.6732 
CMIC 0.042413 0.006056 -0.48174 0.170554 
PIM -0.29804 -0.06644 -0.16636 0.908427 
CAEC 0.197193 0.711327 -0.01187 0.07243 
CMEC 0.045338 0.563212 0.082939 -0.12528 
PIMEC -0.32497 0.859142 -0.00654 0.042216 
ICMIID -0.90451 -0.01906 0.034658 0.146071 
ICAR -0.41657 0.097594 -0.77281 0.087998 
NMImp -0.65193 0.436363 -0.20618 0.30493 
NAImp -0.34605 -0.073 -0.76151 -0.10581 
WMC -0.76982 0.190034 -0.22973 0.42278 
ICMID -0.91419 0.020217 -0.0352 0.042909 
CAIC 0.107346 -0.07125 -0.83893 0.229454 
SIM -0.24624 -0.06727 -0.19449 0.914229 
SIMEC -0.33823 0.862225 -0.03801 -0.06411 
LOC -0.76062 0.04473 -0.33463 0.436776 

Table 6 Rotated Components 

Based on the coefficients of the rotated components in Table 6, the dimensions are interpreted 
as follows 

• PC1: NMImp, LOC, WMC, ICMI_D, ICMIID. These are size measures (LOC, number of 
implemented methods), and complexity measures counting to intra-class method 
invocations. We interpret PC1 to measure the size and complexity of the functionality 
provided by the class. For brevity, we will refer to this PC as the method size of a class. 

• PC2: PIMEC, CAEC, SIMEC: These are export coupling measures. Apparently, the 
mechanisms by which classes export occur concurrently in the system and therefore 
cannot be differentiated. We interpret PC2 to measure export coupling. 

• PC3: ICAR, CAIC, NAImp: The number of attributes, the number of aggregations and 
associations of the class, and the number of accesses to a class’ attributes. We interpret 
this PC to be the size and complexity of the data abstraction underlying the class. For 
brevity, we will refer to this PC as attribute size of the class. 

• PC4: SIM, PIM: These measures count import coupling through static and polymorphic 
method invocations, which is our interpretation of this PC. 

To calculate the change difficulty indices, we selected one measure from each principal 
component and used this measure as a representative of its domain/dimension. Among the 
measures with high coefficients in each PC, we select the measure that captures our 
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interpretation of the PC in a straightforward and simple manner, and is considered2 the most 
accurate indicator of modifiability: 

• PC1 (method size of a class): LOC 

• PC2 (export coupling): SIMEC 

• PC3 (attribute size of a class): NA 

• PC4 (import coupling method invocations): SIM. 

 

4.4.2  Calculation of Change Difficulty Indices 

The change difficulty index (CDI) for a given class c, scenario s, and domain measure m is 
defined as 

CDI(c,s,d) = w(c,s) m(c), 
where 

• w(c,s) is the estimated extent of change to class c in scenario s, and 

• m(c) is the value of the measure selected to represent the domain, for class c. 

Table 7 shows the weights w(c,s) used in the formula for each level of estimated extent of 
change. The four levels of change subdivide the scale (0-100%) into four intervals. We 
assume that within each level, the actually required extent of change to a class is distributed 
equally across the interval spanned by that level (e.g., within L2, any percentage between 
10% and 25% is equally probable to occur). Therefore, we select the mid-points of each 
interval as the weights w(c,s) in the above formula. In general, simulation can always be used 
to perform sensitivity analysis and see whether such weights affect the final outcome of the 
modifiability analysis.  

Level Interval Weight w 

L1 Less than 10% 0.05 

L2 10%-25% 0.175 

L3 25%-50% 0.375 

L4 50%-100% 0.75 

Table 7 Change Weights 

The CDI of a system (for a given scenario and domain measure) is then defined as the sum of 
the CDIs of its classes. Appendix B shows the system-level CDIs thus obtained for each 
system and scenario, across all four domain measures. 

4.4.3 Relationship between structural properties and scenario-based evaluation 
An important question regarding our analysis methodology is whether the measurement-based 
and scenario-based analyses actually produce distinguishable results. Though the nature of 
these analyses is inherently different, they could still produce similar results as classes with 
undesirable structural properties could be more likely affected by changes. In that case, the 
combination of analyses we propose would be an unnecessary complication. 
In this subsection, we perform a simple investigation into the relationship between structural 
class properties and the amount of change estimated for a class during scenario evaluation. 
The amount of change in a class can be characterized as 
                                                
2 If the investigated measures were empirically validated, i.e., shown to relate to relevant external 
quality attributes,  in the context in which they are used, this information should drive the selection. 
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• The number of scenarios that affect the class. This does not take the extent of change into 
account. 

• The number of scenarios that affect the class, weighted by the extent of change (using the 
weights from Table 7, this amounts to calculating CDIs where the structural measure m is 
set to 1). 

 
In addition to the extent of change, we could also assign priorities to the scenarios according 
to their likelihood of occurrence. However, given the small scope of our systems, such a 
prioritization was not possible, and we confined ourselves to the above two options, treating 
each scenario as equally possible. 
We then use Spearman’s Rho to assess the correlation between each size, coupling, or 
complexity measure and the extent of change. Given the skewed distributions of our 
measures, a nonparametric statistic is preferred over a parametric one; it is also less sensitive 
to outlying observations. Table 8 shows the Rho coefficient with p-values. Columns 
“Weighted sum” contain the results when scenarios are weighted by the extent of change, 
Columns “# scenarios” show the results when we just count scenarios affecting classes, 
regardless of the extent of change. Correlations above 0.4 are highlighted as well as p-values 
below 0.05.  
 

 Weighted sum # scenarios 
Measure Spearman rho p-value Spearman rho p-value 
CMIC -0.0999 0.0342 -0.1133 0.0162 
PIM 0.2536 <.0001 0.2429 <.0001 
CAEC -0.0176 0.7098 -0.0450 0.3407 
CMEC -0.0609 0.1976 -0.0742 0.1162 
PIMEC 0.2982 <.0001 0.2962 <.0001 
ICMIID 0.2557 <.0001 0.2594 <.0001 
ICAR 0.3233 <.0001 0.2605 <.0001 
NMImp 0.3905 <.0001 0.4032 <.0001 
NAImp 0.4489 <.0001 0.4415 <.0001 
WMC 0.4102 <.0001 0.3829 <.0001 
ICMID 0.2619 <.0001 0.2657 <.0001 
CAIC 0.2717 <.0001 0.2236 <.0001 
SIM 0.2806 <.0001 0.2688 <.0001 
SIMEC 0.3177 <.0001 0.3150 <.0001 
LOC 0.4930 <.0001 0.4701 <.0001 

Table 8 Correlations of structural measures and extent of change 

With the exception of the export coupling measures CAEC and CMEC, all measures show a 
weak but significant relationship to the amount of scenario changes. The largest impact is 
observed for size (LOC) and method invocation import coupling, in that order. Therefore, the 
structural properties of a class appear to have some influence on its likelihood to be modified 
in the future. The larger the class, the more functionality is allocated to it, the more likely it is 
to be affected by a change. The stronger its coupling, the more it interacts with the rest of the 
system, the more likely it may need to be changed when interaction patterns (communication 
protocols) are changed. This provides additional evidence that it is worthwhile to consider 
structural properties when making design decisions.  
However, with correlation coefficients below 0.5 – i.e., each measure individually explains 
less than 25% of the variation in the extent of change – it is clear that the scenario-based and 
measurement-based evaluation are not redundant, as not all functionality and interaction 
patterns are equally likely to be modified. This confirms that the two analyses are not only 
complementary but are furthermore necessary for a comprehensive investigation of system 
modifiability.  
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The decision whether scenarios are weighted by the extent of change in the class or not has no 
impact on the results in Table 8. Though it is not shown here, note that results obtained using 
a parametric correlation coefficient, such as Pearson’s r, yield the same conclusions . 

4.4.4 Comparison of Change Difficulty Indices 

The comparison of CDIs will be done in two parts: 

I) Compare differences in modifiability due to programming languages. 
II) Compare differences in modifiability due to distribution/communication technology. 

4.4.4.1 Comparing programming languages 

To determine the differences in modifiability due the programming language, we compare the 
CDIs of corresponding Threaded, IPC, and CORBA versions, that is, Java Threaded with C++ 
Threaded, Java IPC with C++ IPC, and Java CORBA with C++ CORBA. For each system 
pair, Wilcoxon T tests [Cap88] are applied to compare the CDIs with respect to each of the 
domain measures. The purpose of this test is to assess the statistical significance in the 
observed differences of the CDI of two systems. We are testing the null hypothesis H0 that 
the distributions of the CDIs of the two systems are the same. The hypothesis H1 is that the 
CDIs have different distributions (we make no assumptions which system has higher CDIs, 
that is, we perform a two-tailed test). 

The Wilcoxon T test only assesses the statistical significance of the differences of the CDIs 
observed for two systems. In order to also quantitatively assess the magnitude of this 
difference, we calculate for each system pair the difference of the systems’ mean CDIs, 
normalized by the standard deviation of their CDIs. The normalization is required to eliminate 
the effects of different measurement units of the various size and coupling measures that the 
CDIs are based on, and allow for systematic comparison of all system pairs. The normalized 
difference is expressed by the following equation: 

2
2

2
1
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where 1µ and 1σ  are the mean and standard deviation of the CDIs (for a given domain 
measure) of one system, and 2µ  and 2σ  are the mean and standard deviation of the CDI (for 
that same domain measure) of the other system. 
The results are summarized in Table 9. The first column indicates the system pairs being 
compared. Each system is denoted by two-letter acronym, the first letter indicating the 
language (J for Java, C for C++), the second letter indicating the version (T for Threaded, I 
for IPC, C for CORBA). 
For each system pair and domain measure, we report two statistics from the Wilcoxon T test 
and the normalized difference of the mean (Column “Stat”). The z-value is the standardized 
sum of positive ranks and the p-value is the probability that z is different from 0 by chance. In 
Columns Dom1 to Dom4 we provide the z and p values for each domain measure. The “D” 
rows indicate the normalized difference of the mean between system pairs. 

Note that p-values below 0.05 are set in boldface. For negative values of z, the system 
mentioned first in Column “System Pair” has lower CDIs (i.e., the Java implementations). For 
positive values of z, this is the system mentioned in second (i.e., the C++ implementation). 
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System Pair Stat Dom1 – LOC Dom2 - SIMEC Dom3 – NA Dom4 – SIM 
JT-CT z 

p 
D 

-2.2934124  
.02182428  
-.21673029 

-.98643085  
.32392173  
-.21634036 

-1.7441632 
0.08113064 
-0.19477561 

-.91915726  
.35801332  
-.08260084 

JI-CI z 
p 
D 

-2.2934124  
.02182428  
-.24141438 

-.82078268  
.41177006  
-.19379721 

-2.2453656 
0.02474467 
-0.21134917 

-1.0702591  
.2845027  
-.12331182 

JC-CC z 
p 
D 

-2.2934124  
.02182428  
-.22120513 

-.61558701  
.53816713  
-.18802293 

-2.1545545 
0.03119671 
-0.20039817 

.10199569  

.9187601  
-.0750603 

Table 9: Comparing CDIs of C++ and Java implementations 

From Table 9 we can see that, for domain measures capturing the method and attribute size of 
the classes, the Java versions have significantly lower CDIs (except for the threaded versions 
with attribute size), whereas, for the other domain measures, the CDIs are not significantly 
different. Two factors play into this: 

• The descriptive statistics of the measures showed the C++ systems to be clearly larger, 
and hence lead to higher CDIs for size measures. On the other hand, the differences for 
other structural properties are small and have little impact on the CDIs. 

• The second factor is the almost identical scenario evaluation for C++ and Java systems. 
Though the C++ versions have consistently higher CDIs for scenarios S4 and S6 (the 
scenarios with differing evaluations for Java and C++), this is not sufficient to cause a 
significant difference when the structural properties of the classes are comparable 
across languages. Though it is not statistically significant, a difference in two out of ten 
scenarios (i.e., 20%) may still be of practical significance, especially if the differences 
in CDIs for these scenarios are huge (the CDIs of C++ for scenarios S4 and S6 are 
higher by factors of up to ten), and if the affected scenarios are more likely to occur. 

The normalized differences of the mean CDIs is about 0.2 standard deviations for Dom1-3, 
and 0.1 for Dom4, in each case to the advantage of the Java systems. Again, this reflects the 
smaller Java implementations and the differing evaluations for two scenarios. The differences 
of 10-20% of the standard deviation may seem small, but can still be of practical significance. 

4.4.4.2 Comparing distribution/communication technologies 

To compare differences in modifiability due to distribution/communication technology, we 
perform a pairwise comparison of all three Java implementations, and a pairwise comparison 
of all three C++ Systems. Table 10 shows the results of the comparison of the three Java 
implementations, following the same format as in the previous section. 
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System Pair Stat Dom1 – LOC Dom2 - SIMEC Dom3 - NA Dom4 - SIM 
JT-JI z 

p 
D 

-1.9829203  
.04737634  
-.03339361 

-2.2019275  
.02767043  
-.11549116 

-1.9846086 
0.04718804 
-0.04071393 

-2.5456692  
.01090685  
-.0076202 

JT-JC z 
p 
D 

-1.9829203  
.04737634  
-.02214153 

-2.2035976  
.02755266  
-.16903536 

-1.9829203 
0.04737634 
-0.00951368 

-2.5439532  
.01096058  
-.02676551 

JI-JC z 
p 
D 

-.81719177  
.41381885  
.01115398 

.81649658  

.41421618  
-.0470602 

1.9829203 
0.04737634 
0.03124103 

-1.9846086  
.04718804  
-.01902806 

Table 10: Comparing the CDIs of the Java Implementations 

For method size and export coupling, the results indicate lower CDIs for the Threaded 
implementation, and no difference between CORBA and the IPC implementations. For 
method invocations, the order is: Threaded < IPC < CORBA. For attribute size, we have 
Threaded < CORBA < IPC. 

To summarize, in all cases, the Threaded version has lower CDIs than both CORBA and IPC. 
There is no consistent trend when comparing IPC and CORBA. 

Again, this is consistent with the results from static analysis and scenario evaluation. Because 
of the way in which the CORBA and IPC versions are implemented, and for the selected set 
of change scenarios, the CORBA and IPC versions require, for a number of scenarios, 
additional modifications in the subsystems service.corba and service.ipc. Hence the lower 
CDIs for Threaded. 

The normalized differences of the standard deviations also indicate better modifiability for the 
Threaded implementation, and no consistent trend when comparing IPC and CORBA. 
However, only for domain measure 2 (export coupling) do we observe a difference that is of 
practical importance  (between 11 and 16 percent of one standard deviation). For the 
remaining domain measures, the normalized differences of 3% and lower are probably not 
practically significant. 
 
System Pair Stat Dom1 - LOC Dom2 - SIMEC Dom3 - NA Dom4 - SIM 
CT-CI z 

p 
D 

-2.2035976  
.02755266  
-.04802046 

-2.2019275  
.02767043  
-.08590471 

-2.2086305 
0.02720035 
-0.04638126 

-2.388352  
.01692412  
-.05086843 

CT-CC z 
p 
D 

-2.2019275  
.02767043  
-.02149598 

-2.2019275  
.02767043  
-.11187284 

-2.2019275 
0.02767043 
-0.01181869 

-2.2019275  
.02767043  
-.02250007 

CI-CC z 
p 
D 

-.11009638  
.91233294  
.02654293 

1.1017988  
.27054916  
-.02235248 

2.2019275 
0.02767043 
0.03466242 

-.11009638  
.91233294  
.02781591 

Table 11: Comparing the CDIs of C++ implementations 

For the C++ implementations, the results are almost identical to what was found for the Java 
systems. In all cases, the Threaded implementation has significantly lower CDIs compared to 
the other implementations, and there is no significant difference between the CORBA and 
IPC implementations. This indicates that differences in the modifiability due to 
distribution/communication technology are independent from the chosen programming 
language. 
Again, the normalized differences of the means are low (between 1% and 11% of one 
standard deviation). We observed higher values and more consistent trends when comparing 
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languages (~20%). This indicates that the impact of the programming language is more 
pervasive. The Java classes are constantly smaller – which affects the CDI of all classes in all 
scenarios. The impact of distribution technologies is visible in only half of the scenarios, and 
affects the CDI of selected classes only. 
 
5 Conclusions 
We can draw two types of conclusions from this study. At the more general level, this paper 
provides a methodology for product and technology evaluation that uses static measurement 
and scenario-based evaluation together. One of the key concepts is the change difficulty index 
(CDI), which allows us to make meaningful and quantifiable comparisons across products. It 
has shown to be useful and the feedback we received from practitioners at Astrium GmbH 
was very positive in that the results obtained from the comparison of the CDIs by and large 
confirmed some of their stronger beliefs: that the Java systems are more maintainable than the 
C++ implementations (10-20% less effort), and that the distributed implementations are more 
complex. However, their expectation that the higher complexity of the distributed 
implementations would be offset by allowing modifications (scenarios) to be implemented 
more easily was not confirmed in this case study and this provided new, important insights to 
the developers. 

We can also draw a number of conclusions regarding the distribution technologies and the 
programming languages we evaluated. For the distribution technologies, the use of CORBA 
or IPC for subsystem communication is an additional overhead when compared to a single-
image implementation, requiring additional implementation code and therefore additional 
maintenance work,. Considering all change scenarios, the difference of CDIs compared to 
non-distributed implementations seems low however (typically, 10% and less). If we assume 
the differences in CDIs to be proportional in cost, this would translate to 10% higher 
maintenance costs for distributed implementations. Of course, non-linear relationships 
between CDIs and maintenance costs are possible and this will be expounded further below. 

If distribution is required, a single image implementation obviously is not feasible. In that 
case, the results show no clear difference in the modifiability of the CORBA and IPC 
implementations. This is independent from whether Java or C++ is being used as the 
implementation language. Furthermore, if we put aside the additional complexity, a 
distributed implementation showed advantages in some of the scenarios, e.g., that replacement 
of components at run-time can, in principle, be better supported than by a non-distributed 
implementation (especially for languages other than Java which do not support run-time class 
replacement). To summarize the discussion above, when there is a choice between a non-
distributed and a distributed implementation, the advantages of the latter carefully needs to be 
balanced with the additional cost it entails. The methodology presented here provided us with 
results that can be used to help quantify this tradeoff. 

Turning to the comparison of programming languages, differences in structural properties 
(coupling) between Java and C++ implementations are too small to have a tangible impact on 
the modifiability of the systems. Most of the functional enhancements considered in the 
scenario evaluation revealed no differences between Java and C++ implementations. 
However, the Java implementations are consistently smaller than the C++ implementations. 
After further analysis, we determined that this difference is due to the use of header files in 
C++, which carry in part redundant information, and some language features such as the 
automatic memory management in Java. As a result, the C++ systems show mean CDIs that 
are about 20% higher than the corresponding Java implementations, i.e., 20% higher 
maintenance cost when we again assume a proportional relationship between CDIs and 
maintenance costs.   
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The scenario evaluation showed that porting the system to a different platform is likely to be 
substantially more expensive in C++. Two factors play into this: 

• The standardized language definition of Java with the very complete library of the JDK 
(over 2000 classes, obviating the need to use COTS libraries), as compared to the various 
C++ dialects, and a less complete set of standard libraries (about 100 classes). For 
scenario 6 (porting to a different OS), an assumption was made that the commercial 
libraries used are available for the new platform. This assumption may in reality not 
always be fulfilled. 

• The virtual machine concept of Java, which realizes its 'write once - run anywhere' 
feature, gives the Java implementation an edge over the C++ implementations in two of 
the ten change scenarios. On the other hand, for this statement we also assume availability 
of a Java VM for the new platform, which may not always be the case. 

Likewise, another scenario showed that run-time replaceability of an AP was easily 
implemented in Java; in C++, a somewhat portable, CORBA-based solution is feasible but 
requires substantial rework of the system. 

Note, in addition, that there are factors not covered by the static measurement, that make 
changes to the Java systems easier and faster, e.g., compilation time is shorter for Java (full 
Java system recompile approx. 30 sec., C++ approx. 3 min.). In general, it is important to note 
that results based on scenarios and static measurement are likely to provide only an 
incomplete answer to our questions. It is always important to think about the limitations of the 
measurement and scenarios being used and complete such studies with qualitative 
considerations.  

Being the result of a single case study on relatively small systems implemented in a simulator 
environment, our findings concerning distribution technologies and programming languages 
do not purport to have general validity. They need to be re-evaluated for other instances 
where these techniques are considered for use. The study showed however, that our 
measurement-based, analysis methodology can produce interpretable and traceable results, 
regarding product and technology evaluation, in the context of its application. 
 
A limitation of our methodology is that it is only applicable to systems, which are either 
already implemented, or for which at least an architectural description exists, from which 
structural properties can be measured (e.g., UML diagrams such as class, object, or sequence 
diagrams). For comparison of design alternatives, all alternatives must be described at 
comparable levels of detail. 
 
Another more general limitation of the method presented above is that differences in CDIs, 
though very helpful, are only an indirect measure of what we really want to know: the 
productivity of change. However, as historical change data are collected in an organization, 
relationship between differences and CDIs and differences in change effort can be established. 
In addition, despite the limitation, a very small difference in CDI is unlikely to result in a 
huge difference in effort. Similarly, huge differences are unlikely to result in negligible 
differences in effort.  Though these plausible assumptions need to be investigated, we believe 
that CDIs are therefore a useful decision making instrument, when used in the context of the 
methodology we provide.  
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Appendices 
 
Appendix A: Results From Static Measurement  
 
This appendix shows the descriptive statistics of the measures for all six systems. For each 
implementation, we provide the sum, mean, standard deviation, maximum, 75th percentile, 
median, 25th percentile and minimum for all measures considered. 
 

Msr Sum Mean StdDev Max 75% Med 25% Min 
CAIC 80 1.142857 2.266874 11 1 0 0 0 
CMIC 47 .6714286 1.683005 12 1 0 0 0 
SIM 347 4.957143 7.396505 44 8 2 0 0 
PIM 386 5.514286 7.930391 44 9 2 0 0 
CAEC 80 1.142857 2.254051 13 1 0 0 0 
CMEC 47 .6714286 1.742241 12 1 0 0 0 
SIMEC 347 4.957143 6.535157 28 8 2 0 0 
PIMEC 386 5.514286 6.758232 28 8 2 1 0 
ICMID 55 .7857143 1.675855 7 1 0 0 0 
ICMIID 66 .9428571 2.152758 11 1 0 0 0 
ICAR 395 5.642857 6.882104 28 9 2.5 0 0 
WMC 492 7.028571 6.765152 29 10 5.5 1 0 
NMImp 358 5.114286 4.063064 16 7 4.5 2 0 
NAImp 292 4.171429 4.432984 17 6 3 1 0 
LOC 2823 40.32857 35.38022 147 52 30 15 1 

Table 12 C++ CORBA version, 70 classes 

 
 

Msr Sum Mean StdDev Max 75% Med 25% Min 
CAIC 86 .9555556 2.060387 11 1 0 0 0 
CMIC 63 .7 1.494935 12 1 0 0 0 
SIM 434 4.822222 6.691564 44 6 3.5 0 0 
PIM 563 6.255556 9.175641 62 9 4 0 0 
CAEC 86 .9555556 2.108896 13 1 0 0 0 
CMEC 63 .7 2.179836 15 0 0 0 0 
SIMEC 434 4.822222 7.303344 40 8 1 0 0 
PIMEC 563 6.255556 7.230648 40 8 4 1 0 
ICMID 78 .8666667 1.601965 7 1 0 0 0 
ICMIID 103 1.144444 2.415126 14 1 0 0 0 
ICAR 450 5 6.375867 28 8 3 0 0 
WMC 607 6.744444 6.47998 30 9 5 3 0 
NMImp 476 5.288889 3.80787 16 7 5 2 0 
NAImp 334 3.711111 4.311585 17 6 2 0 0 
LOC 3328 36.97778 33.577 147 45 25.5 17 1 

Table 13 C++ IPC version, 90 classes 
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Msr Sum Mean StdDev Max 75% Med 25% Min 
CAIC 80 1.230769 2.330298 11 2 0 0 0 
CMIC 47 .7230769 1.736625 12 1 0 0 0 
SIM 303 4.661538 7.029574 44 8 2 0 0 
PIM 330 5.076923 7.321432 44 8 2 0 0 
CAEC 80 1.230769 2.316849 13 1 0 0 0 
CMEC 47 .7230769 1.798504 12 1 0 0 0 
SIMEC 303 4.661538 6.134627 28 8 2 0 0 
PIMEC 330 5.076923 6.225722 28 8 2 1 0 
ICMID 55 .8461538 1.725098 7 1 0 0 0 
ICMIID 66 1.015385 2.218476 11 1 0 0 0 
ICAR 389 5.984615 7.025606 28 10 4 0 0 
WMC 453 6.969231 6.857863 29 9 5 1 0 
NMImp 322 4.953846 3.878751 16 7 4 2 0 
NAImp 286 4.4 4.513175 17 6 3 1 0 
LOC 2601 40.01538 35.57189 147 52 31 13 1 

Table 14 C++ Threaded version, 65 classes 
 
 

Msr Sum Mean StdDev Max 75% Med 25% Min 
CAIC 67 .9710145 1.999787 10 1 0 0 0 
CMIC 45 .6521739 1.443302 7 1 0 0 0 
SIM 343 4.971014 7.58088 46 8 2 0 0 
PIM 397 5.753623 8.423367 46 9 2 0 0 
CAEC 67 .9710145 2.06491 13 1 0 0 0 
CMEC 45 .6521739 1.853662 12 0 0 0 0 
SIMEC 343 4.971014 6.999939 27 8 1 0 0 
PIMEC 397 5.753623 7.436804 28 9 3 0 0 
ICMID 64 .9275362 1.927501 9 1 0 0 0 
ICMIID 77 1.115942 2.404262 12 1 0 0 0 
ICAR 409 5.927536 7.280754 32 10 3 0 0 
WMC 450 6.521739 6.616843 27 9 5 1 0 
NMImp 353 5.115942 4.135699 15 7 4 2 1 
NAImp 259 3.753623 4.244047 20 5 3 1 0 
LOC 2137 30.97101 31.44789 135 39 22 12 2 

Table 15 Java CORBA version, 69 classes 
 

Msr Sum Mean StdDev Max 75% Med 25% Min 
CAIC 73 .8202247 1.818852 10 1 0 0 0 
CMIC 60 .6741573 1.286073 7 1 0 0 0 
SIM 357 4.011236 6.823246 46 6 1 0 0 
PIM 439 4.932584 7.630379 46 7 2 0 0 
CAEC 73 .8202247 1.939786 13 1 0 0 0 
CMEC 60 .6741573 2.255172 15 0 0 0 0 
SIMEC 357 4.011236 6.476346 27 6 1 0 0 
PIMEC 439 4.932584 6.888392 28 6 1 1 0 
ICMID 65 .7303371 1.737056 9 1 0 0 0 
ICMIID 78 .8764045 2.162807 12 1 0 0 0 
ICAR 442 4.966292 6.796472 32 7 2 0 0 
WMC 492 5.52809 6.136867 27 7 3 2 0 
NMImp 411 4.617978 3.98436 16 6 3 2 1 
NAImp 275 3.089888 3.984745 20 4 2 0 0 
LOC 2235 25.11236 28.80713 135 30 15 6 2 

Table 16 Java IPC version, 89 classes 
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Msr Sum Mean StdDev Max 75% Med 25% Min 
CAIC 67 1.046875 2.058121 10 1 0 0 0 
CMIC 45 .703125 1.487297 7 1 0 0 0 
SIM 296 4.625 7.103543 45 8 2 0 0 
PIM 336 5.25 7.60117 45 8.5 2 0 0 
CAEC 67 1.046875 2.1264 13 1 0 0 0 
CMEC 45 .703125 1.916343 12 0 0 0 0 
SIMEC 296 4.625 6.639229 27 7.5 1 0 0 
PIMEC 336 5.25 6.779989 27 9 2.5 0 0 
ICMID 64 1 1.984063 9 1 0 0 0 
ICMIID 77 1.203125 2.476427 12 1 0 0 0 
ICAR 402 6.28125 7.441771 32 10.5 4 0 0 
WMC 414 6.46875 6.725853 27 8.5 5 1 0 
NMImp 318 4.96875 3.999876 15 7 4 2 1 
NAImp 254 3.96875 4.331387 20 5 3 1 0 
LOC 1982 30.96875 31.86577 135 41.5 21.5 10 2 

Table 17 Java Threaded version, 64 classes 
 

Appendix B: Change difficulty indices 
For each of the four domain measures, the following four tables show the system-level CDIs 
obtained for each of the six systems (rows) and ten scenarios (columns).  
 

Domain 
Measure 

Scenario Java 
Threaded 

Java IPC Java 
CORBA 

C++ 
Threaded 

C++ IPC C++ 
CORBA 

S1 17.525 17.525 17.525 22.35 22.35 22.35 
S2 6.9 6.9 6.9 8.1 8.1 8.1 
S3 370.5 372.85 375.7 417.1 421.35 424.45 
S4 15.55 17.9 20.75 46.85 51.1 54.2 
S5 3.1 5.45 8.3 4.4 8.65 11.75 
S6 23.2 23.2 23.2 327.525 340.375 328.975 
S7 6.75 6.75 6.75 5.55 5.55 5.55 
S8 28.575 28.575 28.575 24.675 24.675 24.675 
S9 49.875 49.875 49.875 62.45 62.45 62.45 

Method 
size 

S10 28.6 74.35 48.1 34.525 110.275 56.275 

Table 18 System-level CDIs for Method Size 
Domain 
Measure 

Scenario Java 
Threaded 

Java IPC Java 
CORBA 

C++ 
Threaded 

C++ IPC C++ 
CORBA 

S1 2.975 2.975 2.975 3.025 3.025 3.025 
S2 0 0 0 0 0 0 
S3 25.25 34.45 33.75 26.75 35.9 35.2 
S4 2.95 4.65 3.95 1.375 3.025 2.325 
S5 0.85 2.55 1.85 0.85 2.5 1.8 
S6 4.7 5.2 5.2 37.975 41.525 39.675 
S7 0.05 0.05 0.05 0.05 0.05 0.05 
S8 0.525 0.525 0.525 0.575 0.575 0.575 
S9 2.425 2.425 2.425 2.6 2.6 2.6 

Export 
Coupling 

S10 1.7 3.35 12.3 1.55 3.25 12.05 

Table 19 System-level CDIs for Export Coupling 
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Domain 
Measure 

Scenario Java 
Threaded 

Java IPC Java 
CORBA 

C++ 
Threaded 

C++ IPC C++ 
CORBA 

S1 2.65 2.65 2.65 2.4 2.4 2.4 
S2 0.7 0.7 0.7 0.7 0.7 0.7 
S3 40.4 40.5 40.45 45.65 45.9 45.7 
S4 1.525 1.625 1.575 5.625 5.875 5.675 
S5 0.75 0.85 0.8 0.75 1 0.8 
S6 2.25 2.25 2.25 28.775 29.775 28.925 
S7 0.7 0.7 0.7 0.85 0.85 0.85 
S8 3.55 3.55 3.55 3.675 3.675 3.675 
S9 2.125 2.125 2.125 4.5 4.5 4.5 

Attribute 
Size 

S10 0.8 7.55 2.3 0.75 9 3 

Table 20 System-level CDIs for Attribute Size 
Domain 
Measure 

Scenario Java 
Threaded 

Java IPC Java 
CORBA 

C++ 
Threaded 

C++ IPC C++ 
CORBA 

S1 4.825 4.875 4.875 4.825 4.825 4.825 
S2 2.25 2.3 2.3 2.2 2.2 2.2 
S3 75.15 76.7 78.55 74.5 75.8 77.1 
S4 2.825 2.875 4.725 10.725 11.275 12.575 
S5 1.15 1.2 3.05 1.25 1.8 3.1 
S6 2.65 2.65 2.65 21.1 23.075 21.45 
S7 0.9 0.9 0.9 0.85 0.85 0.85 
S8 3.85 3.85 3.85 3.725 3.725 3.725 
S9 5.95 6.5 6.5 6.5 7.05 7.05 

Method 
Invocation 

S10 7.925 8.1 8.85 8.1 19.35 8.1 
Table 21 System-level CDIs for Method Invocations 
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