
1

Integrating Scenario-based and Measurement-based Software Product
Assessment

Lionel C. Briand
Carleton University

Systems and Computer Engineering
1125 Colonel By Drive

Ottawa, ON, K1S 5B6, Canada
briand@sce.carleton.ca

Jürgen Wüst
Fraunhofer Institute for

Experimental Software Engineering
Sauerwiesen 6

67661 Kaiserslautern, Germany
wuest@iese.fhg.de

IESE Report No. 42.00/E

ISERN Report No. ISERN-00-04

Abstract

The software industry needs means to evaluate software products and compare development
and implementation technologies in the context of actual projects. Solutions need to be cost-
effective but also technically sound. This paper presents a methodology to combine two
software product evaluation techniques: measurement of structural design properties, and
evaluation of change scenarios. The goal is to use these two approaches together so that they
can address each other’s limitations.
In a case study in the context of the European aerospace industry, this combined methodology
was used to assess the impact of choice of programming language and distribution
technology on the maintainability of resulting systems. It encompasses the comparison of
C++ and Java, as well as distribution/communication technologies such as IPC via sockets,
and CORBA implementation. Lessons learned in terms of benefits and limitations are
presented. The study shows the usefulness of the approach presented but it is also clear that it
needs to be used in combination with other means of evaluation and with a critical mind, as
for any engineering solution.

1 Introduction

In many practical situations, we would like to be able to analyze a software product and assess
its quality, e.g., its maintainability [ISO97]. A number of approaches have been taken, which
range from measuring code or designs [BWIL99, CDK98] to analyzing architectures from a
qualitative standpoint [BCK98]. The former approaches are based on measuring structural
properties (e.g., control flow complexity, coupling), through static analysis, that are believed
to be related to quality attributes such as maintainability. A small number of studies have tried
to establish such relationships [BWL99]. Methods based on analyzing architectures, the most
well-known being the Software Architecture Analysis Method (SAAM), are based on
identifying relevant, representative scenarios (e.g., change scenarios for maintainability) and
assess the impact of these scenarios on the system in terms, for example, of change effort and
difficulty.

This paper presents a practical method to integrate the two abovementioned approaches. In
fact, as we will see below, they are complementary and this is the fundamental motivation of
our work. For example, in the context of maintainability, the SAAM analysis indicates which
system parts are likely to be changed in the future, and the static analysis indicates how well
these parts support the changes. We then define “Change Difficulty Indices”, which combine
this information, and will be used as maintainability indicators. We illustrate the application
of the method through a case study that took place at Astrium GmbH (formerly

2

DaimlerChrysler Aerospace) in Germany. Though this study focuses on maintainability, many
aspects and lessons learned are expected to be relevant to other quality aspects. To this end,
we have defined the procedure in a general, reusable manner.

The paper is structured as follows. We first describe the problem, the case study motivations
and settings. We provide a brief overview of the methodology we introduce and then, in the
next section, provide the most important details regarding its implementation. In Section 4,
we report the case study results in a structured manner and discuss them. Section 5 concludes
the study by reporting lessons learned, both in terms of the methodology and the case study
results.

2 Case Study Description

This section presents the motivations for the case study, some aspects of the case study
design, and the systems under study.

2.1 Motivations
Object-oriented component technology is still seldom used for embedded software
development in the aerospace domain. Astrium GmbH (formerly DASA) and the European
Space Agency (ESA) wanted to determine the relative impact of using languages like C++
(which is well established) and Java (under consideration) on performance, maintainability,
and reusability. In addition, they wanted to investigate the use of distribution technologies
such as CORBA (Common Object Request Brokers Architecture) and inter-process
communication (IPC) via sockets. In other words, it was decided to compare C++ and Java in
different distribution contexts:
• no distribution (multithreaded process running in a single image)
• distributed (heavyweight) processes communication via sockets (IPC libraries)
• distributed (heavyweight) processes communicating via a CORBA ORB (Inprise's

Visibroker for C++, the ORB that is part of the JDK1.1 for Java).

The key quality aspects that were selected as being the focus of the study are: performance
(CPU usage, memory consumption), maintainability, and reusability.

2.2 Design of the Case Study

One of the most straightforward and inexpensive ways to answer the questions above would
be to compare different projects using different programming languages and distribution
technologies. The main problem is that it would be difficult, if at all possible, to compare such
systems, as they would differ in size, complexity, design strategy, programming style, usage,
development cycles over the system's lifetime, and so on. In addition, as Java and the
distribution technologies in question are not widely used yet in onboard space software, it
would be difficult to find such projects in the first place. Because of the strategic importance
of taking decisions regarding programming languages and distribution technologies, ESA
decided to finance a study that would replicate the development of the same system six times,
namely, two programming languages times three distribution contexts.

It was, however, decided, that the system should be small, though representative (see next
section). It was also ensured all implementations would be based on the same high-level
design in order to ensure that differences in low-level design would be due to differences in

3

programming language and distribution technology. This was achieved by running the study
as follows:

• The three Java systems were implemented by one professional developer over a course
of about three months. A second professional developer then developed the C++
versions, using the same system high-level design as the Java systems.

• The implementations in a particular language are not independent of each other; the

IPC and CORBA versions are derived from the multithreaded version with additional
code to manage the separate heavyweight processes and the communication between
them via sockets or an ORB.

2.3 Systems under Study
As mentioned above, it was important to develop systems that are representative of the
application domain under study: on-board space software systems. A typical system consists
of a service library, which provides certain generic functionalities to support one or more
flight application programs, to operate the specific onboard hardware configuration.

The functionality offered by the service library includes:

• Acquisition of sensor values
• Execution of telecommands (commands sent from ground control)
• Sending actuator commands
• Monitoring of sensor values
• Generation of housekeeping telemetry
• Generation of report telemetry

To provide a simple but complete example of an on-board system, we also need flight
applications to use these basic functionalities. The flight application to be developed in this
case study is a Thermal Control System (TCS) to control and regulate the onboard
temperature. Onboard payloads emit heat that is absorbed by a radiator. The TCS controls the
temperature by adjusting the amount of coolant that is pumped through the radiator. The TCS
implements the following functions:

• TCS activation: starts all the processes of the TCS system, switch on hardware, etc.

• TCS temperature control: executes a closed loop control of temperature, temperature
adjustment.

• Failure Detection, Isolation, Recovery, e.g., switch to backup pump if the main pump
fails, switch off payloads.

• Change of requested temperature in the TCS.

• TCS deactivation.

The underlying hardware of the services library is a Fault Tolerant Computer (FTC) with
typical on-board functionally like hardware redundancy, MIL-Bus Interface, and so on. It is
running on a real-time OS such as the UNIX-compatible VxWorks. The overall architecture
for the onboard system is depicted in Figure 1.

4

Activation /
Deactivation FDIR Closed Loop

Control Mode Change

Flight Applications Flight App
Layer

DMS
Services

Layer

TC
Executor

Monitoring
Report TM
Generation

Operating
System &

Device
Drivers

Operating System (VxWorks)

Hardware

DataAcquisition
& Control

Housekeeping TM
Generation

DMS Services Library

Figure 1 On-board system architecture

For this case study, however, the development environment was a Windows NT4.0 platform.
A software simulator was developed as a substitute for the physical interfaces, which provide
access to sensors and commands, telecommands, and telemetry.

2.4 Assessment Method Overview

The assessment method is composed of three parts: (1) Analysis of the structural properties of
the design (e.g., based on code static analysis), (2) The development and analysis of scenarios
based on SAAM [BCK98], and (3) an integration of (1) and (2).

2.4.1 Static analysis

The structural properties of a system, such as class coupling, affect the ease with which the
system can undertake maintenance activities, i.e., its general modifiability. We will perform a
static analysis of source code to measure and compare the structural properties of the
software. The type of structural properties we measure is based on previous empirical studies
and, in particular, one study that looked at the impact of coupling on ripple effects when
performing changes [BWL99]. As described below, our structural measures will span
coupling, complexity, and size, as we expect they may all affect the cost of maintenance.

2.4.2 Scenario-based evaluation

The software architecture analysis method (SAAM) [BCK98] is, to our knowledge, the most
advanced and operational method for analyzing the modifiability of a software architecture.
Moreover, it is the only method for which a number of case studies have been reported
[BCK98].

The key idea of SAAM is that whether a software architecture will prove to be modifiable or
not depends on the types of modification that the system is likely to undergo in the future, and
how the architecture supports these changes.

5

Scenarios are the means by which the likely future changes are captured. Scenarios are short
descriptions of a typical usage of the system. They are similar to use cases as described in the
UML [UML1.3]. The scenarios describe a representative set of changes, in functional or non-
functional requirements, that are deemed to be likely to occur in the future.

After a set of likely change scenarios is identified, it is determined for each scenario how the
architecture must be modified to support the scenario, i.e., which parts of the system have to
be modified, added, or deleted, and how extensive are these changes. This will help identify
“hot spots” in the architecture, for instance, modules that will undergo frequent and extensive
changes in the future.
SAAM is typically applied in early stages of the development, at the architectural level. In
this study, the scenario-based evaluation is carried out at a lower level, the implementation
level. Changes to the system will be evaluated at the class level. This is possible because the
fully implemented systems are available at the time the evaluation is carried out.
As SAAM uses a specific set of scenarios, we analyze the ‘specific modifiability’ of the
system, in the context of those scenarios. This contrasts with the ‘general modifiability’
yielded by the static code analysis. We will see below that the two are complementary and
need to be used together.

2.4.3 Integrating SAAM and Structural Measurement

One weakness of the static analysis of structural properties is that they do not discriminate
what parts of the system will change from stable classes. The results from the SAAM analysis
provide us with a way to weight the measurement values from the static code analysis. The
SAAM analysis will indicate which classes are likely to be changed in the future, and the
static analysis will provide indications on the modifiability of these classes.

When static measurement is performed in isolation, classes with high complexity or coupling
are generally considered difficult to maintain or reuse. With the SAAM evaluation, we can
put this into context. A class with high complexity or coupling may cause no problems if it is
unlikely to be changed or reused in the future. On the other hand, for a class that is likely to
undergo frequent changes, even moderate coupling or complexity will result into an additional
maintenance or reuse cost.

Our analysis strategy integrates the static analysis and the SAAM evaluation: For each of the
six systems, we define a Change Difficulty Index (CDI) for each scenario, which incorporates
the extent of changes to classes, and their associated coupling, complexity, and size. A
comparison of the CDIs, at the class level, will provide an insight into the relative
maintainability and reusability of the six systems. Details on this will be provided in the
section. In the following section, we describe each step in more detail.

3 Implementation Strategy

This section describes in more detail how we implemented the method described above in the
context of our study, though many aspects can be generalized to other situations. Our case
study results will then be described in the following section in order to further illustrate the
method’s steps.

6

3.1 Develop Scenarios

In this step, taking again our maintainability example, the system stakeholders1 identify a set
of representative change scenarios, which describe changes of functional or non-functional
requirements that are likely to occur in the future.

Similarly, reuse scenarios could be identified by trying to determine what classes or class
clusters would likely be reused in other flight applications or spacecrafts. However, quality
standards such as ISO9126 do not make a clear distinction between maintainability and
reusability [ISO97]. These qualities are concerned with the ease with which a system can be
modified to suit changed requirements or changes in the environment, respectively. Hence,
reusability and maintainability can be seen as specific forms of modifiability, which will be
assessed here. We will therefore have one set of scenarios covering all aspects of
modifiability in our case study.
The number of scenarios should be large enough to be representative, though this is inherently
subjective. Each scenario, once defined, will be subjected to analysis as described below.

3.2 Analyze Scenarios

For each scenario, the goal is to identify necessary changes to the system at the class level,
and estimate the cost of performing these changes, or the extent of change to the class (what
percentage of the class implementation that will need to be modified).
For each class, we can thus determine the number of scenarios that affect the class. This gives
an indication of how likely the class is to change in the future. These classes should be
designed for ease of maintenance and reuse (e.g., low coupling, complexity, size), and will be
of key interest in the next step, focusing on static analysis.
Other aspects of the scenarios’ analysis (see [BCK98]) provide relevant insight in the general
suitability of the selected architecture but are not our prime focus in this paper:

• How many classes does a given scenario affect? Here, we analyze the locality of
changes. When a scenario requires several classes to be changed, it is more difficult to
maintain consistency between all the classes. In addition, in the context of space
software, all affected modules have to be updated, which puts more stress on the
restricted bandwidth of space communication links.

• Scenario interactions. Two scenarios interact if they necessitate a change to the same
class. Interaction of similar scenarios is fine as this indicates high functional cohesion
of the classes. Interaction of fundamentally different scenarios may be a problem (low
functional cohesion, separation of concerns).

3.3 Perform Structural Measurement
Static analysis is performed to analyze structural properties of classes and assess how
amenable specific classes are to change. The structural properties of a class are considered
indicative of the cognitive complexity of the class. By cognitive complexity we mean the
mental burden of the persons who have to deal with the class (developers, inspectors, testers,
maintainers, etc.). We assume that it is the, sometimes necessary, high cognitive complexity
of a class which causes it to display undesirable external qualities, such as decreased
maintainability and testability, or increased fault-proneness. Figure 2 summarizes the
relationship between structural class properties, cognitive complexity, and external quality.

1 These may include analysts, developers, maintainers, marketing, and management.

7

Structural Class
Properties

(e.g., coupling)

Cognitive
Complexity

External Quality Attributes
(e.g, maintainability,

 fault-proneness)
affect

affect

indicate

Figure 2: Relationships between structural class properties, cognitive complexity, and external
quality

First, we have to identify internal quality attributes of the source code that have an impact on
the maintainability and reusability of the system classes. A set of well-understood internal
attributes along with their hypothesized impact on maintainability and reusability are
summarized in the following table.

Internal Attribute Maintainability Reusability

Coupling Modifications are more difficult to perform
because imported services must be
understood
Ripple effects of changes: classes with high
import coupling are more likely to be affected
by ripple effects, changing classes with high
export coupling is more likely to trigger
ripple effects leading to changes in other
classes

Adaptation is more difficult:
functionality of used classes (import
coupling) must be provided in the
context of reuse

Complexity Changes are more difficult to perform
because of the higher cognitive load involved
in understanding the class to be modified

Adaptation more difficult because of
higher cognitive load
Certification for reuse is more difficult

Size Upload of changed class more expensive Certification for reuse is more difficult

Table 1 Internal quality attributes and their impact on maintainability and reusability

These internal quality attributes in Table 1 have been selected because

• There is empirical evidence for the impact of measures of these attributes on external
system qualities, such as the probability of ripple effects [BWL99], which is one major
aspect of decreased maintainability, or fault-proneness (e.g., [BDPW98], [BWIL99],
[CDK98]). In other words, the measures of these attributes have consistently been
shown to be quality indicators, across a number of case studies. Because external
quality attributes, such as modifiability and fault-proneness, are all symptoms of the
underlying cognitive complexity of classes, we base our choice of structural measures
here on all these results, hoping to capture most of the relevant structural properties
related to the general modifiability of the classes.

• We have a good understanding of the theoretical properties of measures for these
attributes. This helps determine that a proposed coupling measure, for instance, is
actually measuring what it purports to measure. For the selected internal quality
attributes, operational, formal definitions exist [BMB96], against which proposed
measures of these attributes can be checked.

Furthermore, for each of these internal quality attributes, measures were identified that

• can be collected automatically from source code,

• are applicable to C++ and Java and the different communication technologies
investigated here.

8

These measures are presented in the following subsections. We do not claim that our set of
internal quality attributes is complete, nor that the measures of the chosen internal qualities
capture all relevant dimensions. For instance, cohesion is a well-known structural property
that is not used here, because existing measures of cohesion showed inconsistent trends in
their impact on external quality attributes such as fault-proneness [BDPW98, BWIL99]. For
the same reason, certain dimensions of coupling that take inheritance into account, and are
regularly observed in OO systems, were not considered here. As long as these inconsistent
trends are not well understood, it is difficult or unsafe to draw conclusion from such
measurements.

But in general, the strategy at this point of our methodology should be to try to capture all
dimensions that are considered (or have shown to be) related to the quality aspect of interest
(e.g., maintainability).

3.3.1 Coupling Measures

Our coupling measures distinguish the direction or locus of coupling (import and export
coupling), and various coupling mechanisms (e.g., method invocation, aggregation). These
were shown to be widely orthogonal dimensions of coupling in [BDWP98].

• Import coupling via method invocations. These are measures that count, for a class,
the number of external method invocations, or the number of invoked classes.

• Import coupling via aggregation. These are measures that count, in a class, attributes
that have another class as their type.

Export coupling measures were found to be related to fault-proneness, but to a much lesser
extent. These are measures that count how often a class is being used by other classes.,The
frequency with which a class is being used by other classes may not be indicative of the
cognitive complexity of a class: a class could be used by many other classes, but still be
constructed in a simple fashion. However, the modification of a class with high export
coupling is critical, because it may require follow-up modifications that potentially impact
large parts of the system. Therefore, export coupling measures will be relevant in this study.

Name Description

CAIC Class-Attribute interaction Import Coupling. For a class C, this measure counts the number of
attributes (data members) in class C, whose type is of another class D≠C, or derived from another
class D (pointer to an instance, array, reference,…)

CMIC Class-Method interaction Import Coupling. For a class C, this measure counts the number of
parameters of methods of C, whose type is of another class D≠C.

SIM Statically Invoked Methods. For a class C, the number of methods of other classes that are invoked
by methods of C. Only static invocations are considered.

PIM Polymorphistically Invoked Methods. For a class C, the number of methods of other classes that
can, because of polymorphism and dynamic binding, be invoked by methods of C.

CAEC Class-Attribute-interaction Export Coupling. For a class C, this measure counts the number
attribute of all other classes D≠C that have class C as their type.

CMEC Class-Method-interaction Export Coupling. For a class C, this measure counts the number of
parameters of all other classes D≠C whose type is class C.

SIMEC Statically Invoked Methods – Export Coupling. For a class C, the number of method invocations in
all other classes D≠C of any method of class C. Only static invocations are considered.

PIMEC Polymorphistically Invoked Methods – Export Coupling. As SIMEC, except that polymorphism
and dynamic binding is taken into account.

Table 2 Coupling Measures Selected

9

3.3.2 Complexity Measures

The complexity measures to be used in this study focus on the relationships between elements
of a class (i.e., its methods and attributes). Empirical studies have shown that the amount of
method invocations within a class has an impact on the fault-proneness of the class
[BWDP99]. Likewise, accesses to attributes by the methods of the class introduce state
dependencies between the methods, which causes the class to become more difficult to
modify.
The measures of relationships between methods and attributes within a class will be
complemented by traditional complexity measures from structural programming. Such
measures were shown to be indicators of cognitive complexity also in object-oriented
programming [Eva97]. These are measures based on the cyclomatic complexity of the
algorithms of the class methods, for instance, WMC (weighted method complexity, [CK94]).

WMC Weighted Method Complexity: McCabe’s Cyclomatic Complexity Measure, summed over all

methods of the class.

ICMI_D Intra-class method invocations – direct. The number of invocations of methods within a class C.

ICMI_ID Intra-class method invocations – indirect: The number of direct or indirect method invocations
within a class C.

ICAR Intra-class attribute references. The number of references to attributes of class C by methods of
class C.

Table 3 Complexity Measures Selected

3.3.3 Size Measures

The size of a class is known to increase the cognitive load on the person who has to develop
or modify the class, which, for instance, causes larger classes to be more fault-prone
[BWDP99]. We will measure the size of classes in terms of the number of methods, the
number of attributes, and the number of executable and declaration statements in the class.
These measures are equally applicable to C++ and Java, and they are comparable because

• the C++ and Java syntax and language definition are similar, statements in C++ and Java
are at comparable levels of abstraction, and

• the libraries used (JDK for Java, RogueWave's Tools.h++, Threads.h++, and Inprise's
VisiBroker for C++) also offer services at the same levels of abstraction.

LOC Non-blank non-comment-only source lines of code

NMImp Number methods implemented in the class (excludes inherited methods, but
includes redefined or overriding methods)

NAImp Number of attributes (non-inherited ones only)

Table 4 Size Measures Selected

3.3.4 Data Collection

A static source code analyzer, generated with the Sema Group's FAST parser technology
[Sem97], was used to collect the code measures presented above. The analyzer was designed
and developed by Fraunhofer IESE, Germany, to ease the implementation of new measures

10

and to be, to the maximum extent possible, independent of the specific programming language
under study.

3.4 Integration of Scenario Analysis and Structural Measurement

In this final step, we combine the results from the scenario evaluation with the results from
the static source code analysis. For each system, and for each scenario, we define a change
difficulty index (CDI), which accounts for the estimated extent of the changes, and the
coupling, complexity, and size measures of the classes affected by the change.
To calculate the change difficulty indices, we first perform a principal component analysis
(PCA, [Dun89]) on the measures, to identify a minimal and non-redundant subset of the
selected measures that captures most of the variability in the dataset. The goal is to ensure we
do not account several times for the same structural property in our analysis. As a result from
PCA, we obtain a number of orthogonal structural dimensions (or domains), characterized by
a subset of measures. We then pick one measure from each dimension to account for the
general modifiability of classes. Further details will be provided below while presenting the
case study.

For each scenario, we weight each selected measure for each class by the extent of change it
undergoes, and take the sum of the weighted measure values over all classes in the system.
Thus, a change difficulty index for a given scenario s and a selected measure m is of the form

∑
=

=
n

j
jj CmsCwmsCDI

1

)(),(),(

where C1,… ,Cn are the classes of the system, w(Cj,s) is the extent of change in class Cj for
scenario s, and m(Cj) is the value of structural class property measured by m, obtained for
class Cj.
The definition of the CDI is based on the idea that ‘undesirable’ structural class properties
such as high coupling, complexity, or size, (resulting in high m(Cj) value), are acceptable if
the class is not likely to undergo modifications (low w(Cj,s)) value). Similarly, extensive
changes to a class are acceptable if the class is well designed for it (low coupling, complexity,
size, and hence low m(Cj) value). However, when extensive changes and high coupling,
complexity, or size coincide, this is penalized as it causes high CDI values.
As a result, we will have, for each system, a distribution of change difficulty indices per
domain measurement and scenario. Such distributions are then the basis for comparing
systems as they capture, for expected change scenarios, the extent and complexity of
performing the changes. We use the case study below as an opportunity to provide further
details on the analysis procedure.

4 Case Study Results
A set of ten change scenarios has been identified by a group of stakeholders (developers,
project managers at ESA and Astrium GmbH), to capture representative, likely future changes
(new functional requirements) for the system specifications under consideration. For each
scenario, the system developers determined how each of the six systems had to be modified to
support the change. For each affected class, the extent of the change to the class was
estimated. The change scenarios we identified are briefly described in Section 4.1 and the
scenarios’ analysis results are summarized in Section 4.2. Note that the selected scenarios
capture both aspects of maintenance (functional requirements enhancements) and reuse (use
of the software in different contexts).

11

4.1 Selected Scenarios

We briefly present the ten change scenarios that were obtained following the SAAM process.
In the context of our case study, the study participants felt these changes were representative
of what could be expected in the foreseeable future. It also fulfilled the requirements to
perform the statistical analysis required by our procedure. As the scenario evaluation carried
out here is fine-grained, the description of the scenarios given here can only give the reader a
rough idea of their nature, as a detailed understanding would require in-depth knowledge of
the system.

• S1: Support for new functional forms for calibration functions. Calibration functions
map raw measurement value obtained from a sensor onto a meaningful scale.

• S2: Better FDIR (fault detection, isolation, recovery) capabilities: more complicated
preconditions to start an FDIR need to be specified.

• S3: Change in the on-board-hardware configuration: add or remove a piece of
hardware in the TCS. The system must not be taken down for reconfiguration.

• S4: Adding a flight application program that performs completely new operations
using the existing, unchanged hardware while the system is running.

• S5: Adding a new telecommand to modify a calibration constant while the system is
running.

• S6: The system is to be run on a different operating system. Several assumptions about
availability of a Java Virtual Machine and third party class libraries for the new
platform were made.

• S7: Instead of the simulated HW interface, connect to a real subsystem based on the
MIL STD protocol – without change to configuration data tables.

• S8: Connection to a real subsystem based on the MIL STD protocol – with changes to
the configuration data tables.

• S9: Application of the service layer in a manned space system (implies two
destinations for telemetry data and two sources of control data).

• S10: Adding redundancy support for the service layer to ensure continuous system
operation.

4.2 Analysis of Scenarios

We list the system classes that are affected by each scenario, give a description of the change,
and an estimate how extensive the change is. The extent of change is expressed as a
percentage of the class implementation that needs to be modified. Since in practice an actual
percentage cannot be estimated in a reliable and efficient manner, we distinguish four levels
(L) change extent: Less than 10% (L1), 10-25% (L2), 25-50% (L3), 50-100% (L4).
In Table 5, we list all classes that are affected by at least one of the above scenarios. Columns
“Lan.”, “Dist..”, and “Class Name” indicate the language (C++ or Java, or “all” when the
changes affect both languages equally), distribution technology (IPC, CORBA, or all , i.e.,
Threaded, IPC and CORBA versions) and the changed classes’ names.

12

Lan. Dist. Class Name S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
all CORBA CORBA-IDL L1 L1 L1
C++ all New class L4 L4 L4 L4
java all New class L4 L4 L4
C++ all ool.config.CDTTable L1 L4 L1 L1
java all ool.config.CDTTable L1 L4 L1
all all ool.config.ConfigurationDataTableConstants L1 L1
all all ool.config.GlobalUtilities L1
c++ all ool.config.Jproperties L1
all all ool.config.MonitoringTableConstants L1
all all ool.config.PacketDescriptionTableConstants L1
all all ool.service.CsvDataBase L1
c++ all ool.service.CsvEntry L1
java all ool.service.CsvTable L1
c++ all ool.service.DataPoolAccessor L1 L1
java all ool.service.DataPoolAccessor L1
c++ all ool.service.GroundConnection L2 L3
java all ool.service.GroundConnection L3
c++ all ool.service.MonitorTable L3
java all ool.service.MonitorTable L1
c++ all ool.service.SubsystemController L4 L3 L1 L2
java all ool.service.SubsystemController L4 L1 L1 L2
c++ all ool.service.SubsystemHandler L4 L2
java all ool.service.SubsystemHandler L4 L1
all all ool.service.TCExecution L1 L1 L1
all all ool.service.TCExecutor L1 L1 L1
c++ all ool.service.TMFormatter L4 L2 L2
java all ool.service.TMFormatter L4 L2
all all ool.service.TMGenerator L4 L1
all all ool.service.api.AnalogMeasurement L3 L1
c++ all ool.service.api.AutomatedProcedure L2 L2
java all ool.service.api.AutomatedProcedure L2 L1
java all ool.service.api.AutomatedProcedure.Code L2
c++ all ool.service.api.AutomatedProcedureCode L4
c++ all ool.service.api.ServiceManager L1 L1 L4 L1 L1 L2
java all ool.service.api.ServiceManager L1 L1 L4 L2
c++ CORBA ool.service.corba.SystemControlClient L1 L4
java CORBA ool.service.corba.SystemControlClient L4
all CORBA ool.service.corba.SystemControlServer L1 L1 L1
all CORBA ool.service.corba.TCExecutor L1 L1 L1
all IPC ool.service.ipc.SubsystemHandler L4
all IPC ool.service.ipc.SystemControl L1 L1 L1
c++ IPC ool.service.ipc.SystemControlClientConnection L2
java IPC ool.service.ipc.SystemControlClientConnection
c++ IPC ool.service.ipc.SystemControlServer L1 L1 L1 L1
java IPC ool.service.ipc.SystemControlServer L1 L1 L1
c++ IPC ool.service.ipc.TCExecutor L1 L1 L1 L1 L4
java IPC ool.service.ipc.TCExecutor L1 L1 L1 L4
c++ IPC ool.service.ipc.TMGenerator L1 L4
java IPC ool.service.ipc.TMGenerator L4
c++ all ool.service.utils.BoundedQueue L4
c++ all ool.service.utils.ObjectPool L4
java all ool.service.utils.ObjectPool L1
c++ all ool.service.utils.TickGenerator L4
c++ all ool.service.utils.Timer L4
c++ all ool.tcs.PayloadActivation L2
c++ all ool.tcs.PumpFDIR L2
c++ all ool.tcs.TemperatureControl L2

Table 5 Interactions between scenarios and classes

For each class, we indicate by which scenarios it is affected, and the estimated extent of the
modification for each scenario (columns S1 to S10).

A number of qualitative observations can be drawn from the table:

• Comparing C++ and Java systems. Only scenarios S4 and S6 reveal differences
between the C++ and Java systems. For all other scenarios, the evaluation of
corresponding Java and C++ implementations is identical. This is due to the fact that

13

the system structure and distribution of functionality is almost identical across
corresponding C++ and Java implementations. Hence both versions require similar
changes to accommodate a given scenario. For scenarios S4 and S6, the availability of
specific language features of Java (runtime replaceability of classes, write-once-run-
anywhere plus standardized libraries of the JDK) result in different technical solutions
which are, in terms of modifiability, favoring the Java implementations.

• Comparing distribution/communication technologies. For the selected set of
scenarios, the IPC and CORBA implementations show no advantages over the
Threaded implementations. Scenarios S3, S4, S5, S6, and S10 impose additional
maintenance effort for the classes in service.corba and service.ipc. In all other
scenarios, the evaluation of the IPC and CORBA implementations is identical to the
respective Threaded implementation. This result is largely due to the narrow focus of
the investigated systems: they are small and can conveniently run on a single machine.
The advantages of distributed solutions will very likely become more evident when
dealing with larger flight application systems.

As mentioned above, a SAAM evaluation typically includes additional analyses: scenario
interaction (a class is affected by two or more different scenarios), and scenario spread (a
scenario affects two or more classes).

• Scenario interaction. Most classes are affected by one or two scenarios. 12 classes
are affected by three scenarios, eight classes are affected by four scenarios, and class
ServiceManager of the C++ implementation is affected by five scenarios. The
presence of scenario interaction may indicate a problem if the scenarios are inherently
different, as this hints at low functional cohesion – the class may be overloaded with
several, distinct functionalities. The scenarios can be “incompatible” and
implementing two changes from different scenarios may be difficult or lead to
unforeseen side effects. During an architecture evaluation, if extreme scenario
interactions are discovered, design alternatives should be considered to alleviate their
potentially harmful effects.

• Scenario spread. The impact of most scenarios is spread over several classes, but
these classes are then usually restricted to one or two subsystems. This indicates that
the most important design decisions are encapsulated into a small part of the system.
Scenarios S3, S4, and S6 display a large spread, each affecting more than ten classes.

4.3 Static Measurement Results

A static analysis of the source code of each system version was performed to measure their
structural properties, using the measures introduced in Section 3.3. The measurement results
are considered here to be only an intermediate step, providing the necessary input the to the
calculation of change difficulty indices. Appendix A summarizes the descriptive statictics
including mean, minimum, maximum values, and standard deviation for all measures
considered.

The Java versions have one class less than their corresponding C++ versions. Other than that,
as expected since the same high-level design was used, there is a direct mapping between
classes in corresponding C++ and Java systems.

- There are, however, some differences in the measurement values for corresponding Java
and C++ systems. In terms of LOC, the Java systems are about 25% smaller than the C++
systems, and the Java systems have about 10% less attribute and aggregation coupling.
The differences in size are due to the C++ header files, which contain the class definitions,

14

and are a source of redundancy. Also, memory management has to be explicitly dealt with
by the developers in C++, whereas in Java this is taken care of by an automatic garbage
collection mechanism.

With respect to the other measures, differences are mostly within +/- 10%. Again, this reflects
that the corresponding implementations are very close (almost identical system structure and
communication paths).

When comparing the versions of the same language, but different distribution/communication
technologies, the threaded implementations have lower coupling, complexity, and size than
the CORBA implementations, which in turn, have lower coupling, complexity, and size than
the IPC implementations. Threaded implementations therefore show an advantage in terms of
general modifiability.

4.4 Change Difficulty Indices

In this final step, we combine the results from the scenario and static source code analyses.
For each system, and for each scenario, we define change difficulty indices (CDIs), which
incorporate the estimated extent of the changes, and the coupling, complexity, and size
measures of the classes affected by the change. In this section, we illustrate in detail how
CDIs are computed and used.

4.4.1 Principal Component Analysis

If a group of variables in a data set (such as the coupling, complexity, and size measures we
collected for the six systems) are strongly correlated, these variables essentially measure the
same underlying dimension (i.e., property) of the class to be measured. It is necessary to
identify and eliminate such redundancy, so that no single dimension inadvertently receives a
higher weight in the subsequent analyses.

Principal component analysis (PCA) is a standard technique to identify the underlying,
orthogonal dimensions that explain relations between the variables in a data set [Dun89].
Principal components (PCs) are linear combinations of the standardized variables. The sum of
the squares of the coefficients of the standardized variables in one linear combination is equal
to one. PCs are calculated as follows. The first PC is the linear combination of all
standardized variables that explains a maximum amount of variance in the data set. The
second and subsequent PCs are linear combinations of all standardized variables, where each
new PC is orthogonal to all previously calculated PCs and captures a maximum of the
remaining variance under these conditions.

Usually, only a subset of variables has large coefficients and therefore contributes
significantly to the variance of each PC. The variables with high coefficients help to identify
the dimension the PC is capturing, but this usually requires some degree of interpretation. The
dimensions the PCs are capturing are also referred to as the domains of the data set.

All six systems were merged into one data set, on which then the PCA was performed. We
also performed PCA

- on each individual system separately,

- on the three C++ systems, and
- and on the three Java systems,

to verify whether the distribution/communication technology and/or programming language
has an impact on the dimensions that are spanned by the selected structural measures.
However, in each case, we arrived at the same interpretations of the PCs as those obtained

15

from the complete data set. That is, the dimensions that are spanned by the measures used
here are not influenced by the used distribution/communication technology, or by the
programming language. We can therefore conclude that the PCs below can be observed and
are meaningful in all six systems under study.

PCA identified four orthogonal dimensions that capture 75% of the variance of the data set.
The rotated components are presented in the table below.

Princ. Comp. PC1 PC2 PC3 PC4
EigenValue: 5.6788 2.6098 1.6456 1.2668
Percent: 37.8586 17.3986 10.9704 8.4455
CumPercent: 37.8586 55.2572 66.2276 74.6732
CMIC 0.042413 0.006056 -0.48174 0.170554
PIM -0.29804 -0.06644 -0.16636 0.908427
CAEC 0.197193 0.711327 -0.01187 0.07243
CMEC 0.045338 0.563212 0.082939 -0.12528
PIMEC -0.32497 0.859142 -0.00654 0.042216
ICMIID -0.90451 -0.01906 0.034658 0.146071
ICAR -0.41657 0.097594 -0.77281 0.087998
NMImp -0.65193 0.436363 -0.20618 0.30493
NAImp -0.34605 -0.073 -0.76151 -0.10581
WMC -0.76982 0.190034 -0.22973 0.42278
ICMID -0.91419 0.020217 -0.0352 0.042909
CAIC 0.107346 -0.07125 -0.83893 0.229454
SIM -0.24624 -0.06727 -0.19449 0.914229
SIMEC -0.33823 0.862225 -0.03801 -0.06411
LOC -0.76062 0.04473 -0.33463 0.436776

Table 6 Rotated Components

Based on the coefficients of the rotated components in Table 6, the dimensions are interpreted
as follows

• PC1: NMImp, LOC, WMC, ICMI_D, ICMIID. These are size measures (LOC, number of
implemented methods), and complexity measures counting to intra-class method
invocations. We interpret PC1 to measure the size and complexity of the functionality
provided by the class. For brevity, we will refer to this PC as the method size of a class.

• PC2: PIMEC, CAEC, SIMEC: These are export coupling measures. Apparently, the
mechanisms by which classes export occur concurrently in the system and therefore
cannot be differentiated. We interpret PC2 to measure export coupling.

• PC3: ICAR, CAIC, NAImp: The number of attributes, the number of aggregations and
associations of the class, and the number of accesses to a class’ attributes. We interpret
this PC to be the size and complexity of the data abstraction underlying the class. For
brevity, we will refer to this PC as attribute size of the class.

• PC4: SIM, PIM: These measures count import coupling through static and polymorphic
method invocations, which is our interpretation of this PC.

To calculate the change difficulty indices, we selected one measure from each principal
component and used this measure as a representative of its domain/dimension. Among the
measures with high coefficients in each PC, we select the measure that captures our

16

interpretation of the PC in a straightforward and simple manner, and is considered2 the most
accurate indicator of modifiability:

• PC1 (method size of a class): LOC

• PC2 (export coupling): SIMEC

• PC3 (attribute size of a class): NA

• PC4 (import coupling method invocations): SIM.

4.4.2 Calculation of Change Difficulty Indices

The change difficulty index (CDI) for a given class c, scenario s, and domain measure m is
defined as

CDI(c,s,d) = w(c,s) m(c),
where

• w(c,s) is the estimated extent of change to class c in scenario s, and

• m(c) is the value of the measure selected to represent the domain, for class c.

Table 7 shows the weights w(c,s) used in the formula for each level of estimated extent of
change. The four levels of change subdivide the scale (0-100%) into four intervals. We
assume that within each level, the actually required extent of change to a class is distributed
equally across the interval spanned by that level (e.g., within L2, any percentage between
10% and 25% is equally probable to occur). Therefore, we select the mid-points of each
interval as the weights w(c,s) in the above formula. In general, simulation can always be used
to perform sensitivity analysis and see whether such weights affect the final outcome of the
modifiability analysis.

Level Interval Weight w

L1 Less than 10% 0.05

L2 10%-25% 0.175

L3 25%-50% 0.375

L4 50%-100% 0.75

Table 7 Change Weights

The CDI of a system (for a given scenario and domain measure) is then defined as the sum of
the CDIs of its classes. Appendix B shows the system-level CDIs thus obtained for each
system and scenario, across all four domain measures.

4.4.3 Relationship between structural properties and scenario-based evaluation
An important question regarding our analysis methodology is whether the measurement-based
and scenario-based analyses actually produce distinguishable results. Though the nature of
these analyses is inherently different, they could still produce similar results as classes with
undesirable structural properties could be more likely affected by changes. In that case, the
combination of analyses we propose would be an unnecessary complication.
In this subsection, we perform a simple investigation into the relationship between structural
class properties and the amount of change estimated for a class during scenario evaluation.
The amount of change in a class can be characterized as

2 If the investigated measures were empirically validated, i.e., shown to relate to relevant external
quality attributes, in the context in which they are used, this information should drive the selection.

17

• The number of scenarios that affect the class. This does not take the extent of change into
account.

• The number of scenarios that affect the class, weighted by the extent of change (using the
weights from Table 7, this amounts to calculating CDIs where the structural measure m is
set to 1).

In addition to the extent of change, we could also assign priorities to the scenarios according
to their likelihood of occurrence. However, given the small scope of our systems, such a
prioritization was not possible, and we confined ourselves to the above two options, treating
each scenario as equally possible.
We then use Spearman’s Rho to assess the correlation between each size, coupling, or
complexity measure and the extent of change. Given the skewed distributions of our
measures, a nonparametric statistic is preferred over a parametric one; it is also less sensitive
to outlying observations. Table 8 shows the Rho coefficient with p-values. Columns
“Weighted sum” contain the results when scenarios are weighted by the extent of change,
Columns “# scenarios” show the results when we just count scenarios affecting classes,
regardless of the extent of change. Correlations above 0.4 are highlighted as well as p-values
below 0.05.

 Weighted sum # scenarios
Measure Spearman rho p-value Spearman rho p-value
CMIC -0.0999 0.0342 -0.1133 0.0162
PIM 0.2536 <.0001 0.2429 <.0001
CAEC -0.0176 0.7098 -0.0450 0.3407
CMEC -0.0609 0.1976 -0.0742 0.1162
PIMEC 0.2982 <.0001 0.2962 <.0001
ICMIID 0.2557 <.0001 0.2594 <.0001
ICAR 0.3233 <.0001 0.2605 <.0001
NMImp 0.3905 <.0001 0.4032 <.0001
NAImp 0.4489 <.0001 0.4415 <.0001
WMC 0.4102 <.0001 0.3829 <.0001
ICMID 0.2619 <.0001 0.2657 <.0001
CAIC 0.2717 <.0001 0.2236 <.0001
SIM 0.2806 <.0001 0.2688 <.0001
SIMEC 0.3177 <.0001 0.3150 <.0001
LOC 0.4930 <.0001 0.4701 <.0001

Table 8 Correlations of structural measures and extent of change

With the exception of the export coupling measures CAEC and CMEC, all measures show a
weak but significant relationship to the amount of scenario changes. The largest impact is
observed for size (LOC) and method invocation import coupling, in that order. Therefore, the
structural properties of a class appear to have some influence on its likelihood to be modified
in the future. The larger the class, the more functionality is allocated to it, the more likely it is
to be affected by a change. The stronger its coupling, the more it interacts with the rest of the
system, the more likely it may need to be changed when interaction patterns (communication
protocols) are changed. This provides additional evidence that it is worthwhile to consider
structural properties when making design decisions.
However, with correlation coefficients below 0.5 – i.e., each measure individually explains
less than 25% of the variation in the extent of change – it is clear that the scenario-based and
measurement-based evaluation are not redundant, as not all functionality and interaction
patterns are equally likely to be modified. This confirms that the two analyses are not only
complementary but are furthermore necessary for a comprehensive investigation of system
modifiability.

18

The decision whether scenarios are weighted by the extent of change in the class or not has no
impact on the results in Table 8. Though it is not shown here, note that results obtained using
a parametric correlation coefficient, such as Pearson’s r, yield the same conclusions .

4.4.4 Comparison of Change Difficulty Indices

The comparison of CDIs will be done in two parts:

I) Compare differences in modifiability due to programming languages.
II) Compare differences in modifiability due to distribution/communication technology.

4.4.4.1 Comparing programming languages

To determine the differences in modifiability due the programming language, we compare the
CDIs of corresponding Threaded, IPC, and CORBA versions, that is, Java Threaded with C++
Threaded, Java IPC with C++ IPC, and Java CORBA with C++ CORBA. For each system
pair, Wilcoxon T tests [Cap88] are applied to compare the CDIs with respect to each of the
domain measures. The purpose of this test is to assess the statistical significance in the
observed differences of the CDI of two systems. We are testing the null hypothesis H0 that
the distributions of the CDIs of the two systems are the same. The hypothesis H1 is that the
CDIs have different distributions (we make no assumptions which system has higher CDIs,
that is, we perform a two-tailed test).

The Wilcoxon T test only assesses the statistical significance of the differences of the CDIs
observed for two systems. In order to also quantitatively assess the magnitude of this
difference, we calculate for each system pair the difference of the systems’ mean CDIs,
normalized by the standard deviation of their CDIs. The normalization is required to eliminate
the effects of different measurement units of the various size and coupling measures that the
CDIs are based on, and allow for systematic comparison of all system pairs. The normalized
difference is expressed by the following equation:

2
2

2
1

21

σσ
µµ

+
−=D ,

where 1µ and 1σ are the mean and standard deviation of the CDIs (for a given domain
measure) of one system, and 2µ and 2σ are the mean and standard deviation of the CDI (for
that same domain measure) of the other system.
The results are summarized in Table 9. The first column indicates the system pairs being
compared. Each system is denoted by two-letter acronym, the first letter indicating the
language (J for Java, C for C++), the second letter indicating the version (T for Threaded, I
for IPC, C for CORBA).
For each system pair and domain measure, we report two statistics from the Wilcoxon T test
and the normalized difference of the mean (Column “Stat”). The z-value is the standardized
sum of positive ranks and the p-value is the probability that z is different from 0 by chance. In
Columns Dom1 to Dom4 we provide the z and p values for each domain measure. The “D”
rows indicate the normalized difference of the mean between system pairs.

Note that p-values below 0.05 are set in boldface. For negative values of z, the system
mentioned first in Column “System Pair” has lower CDIs (i.e., the Java implementations). For
positive values of z, this is the system mentioned in second (i.e., the C++ implementation).

19

System Pair Stat Dom1 – LOC Dom2 - SIMEC Dom3 – NA Dom4 – SIM
JT-CT z

p
D

-2.2934124
.02182428
-.21673029

-.98643085
.32392173
-.21634036

-1.7441632
0.08113064
-0.19477561

-.91915726
.35801332
-.08260084

JI-CI z
p
D

-2.2934124
.02182428
-.24141438

-.82078268
.41177006
-.19379721

-2.2453656
0.02474467
-0.21134917

-1.0702591
.2845027
-.12331182

JC-CC z
p
D

-2.2934124
.02182428
-.22120513

-.61558701
.53816713
-.18802293

-2.1545545
0.03119671
-0.20039817

.10199569

.9187601
-.0750603

Table 9: Comparing CDIs of C++ and Java implementations

From Table 9 we can see that, for domain measures capturing the method and attribute size of
the classes, the Java versions have significantly lower CDIs (except for the threaded versions
with attribute size), whereas, for the other domain measures, the CDIs are not significantly
different. Two factors play into this:

• The descriptive statistics of the measures showed the C++ systems to be clearly larger,
and hence lead to higher CDIs for size measures. On the other hand, the differences for
other structural properties are small and have little impact on the CDIs.

• The second factor is the almost identical scenario evaluation for C++ and Java systems.
Though the C++ versions have consistently higher CDIs for scenarios S4 and S6 (the
scenarios with differing evaluations for Java and C++), this is not sufficient to cause a
significant difference when the structural properties of the classes are comparable
across languages. Though it is not statistically significant, a difference in two out of ten
scenarios (i.e., 20%) may still be of practical significance, especially if the differences
in CDIs for these scenarios are huge (the CDIs of C++ for scenarios S4 and S6 are
higher by factors of up to ten), and if the affected scenarios are more likely to occur.

The normalized differences of the mean CDIs is about 0.2 standard deviations for Dom1-3,
and 0.1 for Dom4, in each case to the advantage of the Java systems. Again, this reflects the
smaller Java implementations and the differing evaluations for two scenarios. The differences
of 10-20% of the standard deviation may seem small, but can still be of practical significance.

4.4.4.2 Comparing distribution/communication technologies

To compare differences in modifiability due to distribution/communication technology, we
perform a pairwise comparison of all three Java implementations, and a pairwise comparison
of all three C++ Systems. Table 10 shows the results of the comparison of the three Java
implementations, following the same format as in the previous section.

20

System Pair Stat Dom1 – LOC Dom2 - SIMEC Dom3 - NA Dom4 - SIM
JT-JI z

p
D

-1.9829203
.04737634
-.03339361

-2.2019275
.02767043
-.11549116

-1.9846086
0.04718804
-0.04071393

-2.5456692
.01090685
-.0076202

JT-JC z
p
D

-1.9829203
.04737634
-.02214153

-2.2035976
.02755266
-.16903536

-1.9829203
0.04737634
-0.00951368

-2.5439532
.01096058
-.02676551

JI-JC z
p
D

-.81719177
.41381885
.01115398

.81649658

.41421618
-.0470602

1.9829203
0.04737634
0.03124103

-1.9846086
.04718804
-.01902806

Table 10: Comparing the CDIs of the Java Implementations

For method size and export coupling, the results indicate lower CDIs for the Threaded
implementation, and no difference between CORBA and the IPC implementations. For
method invocations, the order is: Threaded < IPC < CORBA. For attribute size, we have
Threaded < CORBA < IPC.

To summarize, in all cases, the Threaded version has lower CDIs than both CORBA and IPC.
There is no consistent trend when comparing IPC and CORBA.

Again, this is consistent with the results from static analysis and scenario evaluation. Because
of the way in which the CORBA and IPC versions are implemented, and for the selected set
of change scenarios, the CORBA and IPC versions require, for a number of scenarios,
additional modifications in the subsystems service.corba and service.ipc. Hence the lower
CDIs for Threaded.

The normalized differences of the standard deviations also indicate better modifiability for the
Threaded implementation, and no consistent trend when comparing IPC and CORBA.
However, only for domain measure 2 (export coupling) do we observe a difference that is of
practical importance (between 11 and 16 percent of one standard deviation). For the
remaining domain measures, the normalized differences of 3% and lower are probably not
practically significant.

System Pair Stat Dom1 - LOC Dom2 - SIMEC Dom3 - NA Dom4 - SIM
CT-CI z

p
D

-2.2035976
.02755266
-.04802046

-2.2019275
.02767043
-.08590471

-2.2086305
0.02720035
-0.04638126

-2.388352
.01692412
-.05086843

CT-CC z
p
D

-2.2019275
.02767043
-.02149598

-2.2019275
.02767043
-.11187284

-2.2019275
0.02767043
-0.01181869

-2.2019275
.02767043
-.02250007

CI-CC z
p
D

-.11009638
.91233294
.02654293

1.1017988
.27054916
-.02235248

2.2019275
0.02767043
0.03466242

-.11009638
.91233294
.02781591

Table 11: Comparing the CDIs of C++ implementations

For the C++ implementations, the results are almost identical to what was found for the Java
systems. In all cases, the Threaded implementation has significantly lower CDIs compared to
the other implementations, and there is no significant difference between the CORBA and
IPC implementations. This indicates that differences in the modifiability due to
distribution/communication technology are independent from the chosen programming
language.
Again, the normalized differences of the means are low (between 1% and 11% of one
standard deviation). We observed higher values and more consistent trends when comparing

21

languages (~20%). This indicates that the impact of the programming language is more
pervasive. The Java classes are constantly smaller – which affects the CDI of all classes in all
scenarios. The impact of distribution technologies is visible in only half of the scenarios, and
affects the CDI of selected classes only.

5 Conclusions
We can draw two types of conclusions from this study. At the more general level, this paper
provides a methodology for product and technology evaluation that uses static measurement
and scenario-based evaluation together. One of the key concepts is the change difficulty index
(CDI), which allows us to make meaningful and quantifiable comparisons across products. It
has shown to be useful and the feedback we received from practitioners at Astrium GmbH
was very positive in that the results obtained from the comparison of the CDIs by and large
confirmed some of their stronger beliefs: that the Java systems are more maintainable than the
C++ implementations (10-20% less effort), and that the distributed implementations are more
complex. However, their expectation that the higher complexity of the distributed
implementations would be offset by allowing modifications (scenarios) to be implemented
more easily was not confirmed in this case study and this provided new, important insights to
the developers.

We can also draw a number of conclusions regarding the distribution technologies and the
programming languages we evaluated. For the distribution technologies, the use of CORBA
or IPC for subsystem communication is an additional overhead when compared to a single-
image implementation, requiring additional implementation code and therefore additional
maintenance work,. Considering all change scenarios, the difference of CDIs compared to
non-distributed implementations seems low however (typically, 10% and less). If we assume
the differences in CDIs to be proportional in cost, this would translate to 10% higher
maintenance costs for distributed implementations. Of course, non-linear relationships
between CDIs and maintenance costs are possible and this will be expounded further below.

If distribution is required, a single image implementation obviously is not feasible. In that
case, the results show no clear difference in the modifiability of the CORBA and IPC
implementations. This is independent from whether Java or C++ is being used as the
implementation language. Furthermore, if we put aside the additional complexity, a
distributed implementation showed advantages in some of the scenarios, e.g., that replacement
of components at run-time can, in principle, be better supported than by a non-distributed
implementation (especially for languages other than Java which do not support run-time class
replacement). To summarize the discussion above, when there is a choice between a non-
distributed and a distributed implementation, the advantages of the latter carefully needs to be
balanced with the additional cost it entails. The methodology presented here provided us with
results that can be used to help quantify this tradeoff.

Turning to the comparison of programming languages, differences in structural properties
(coupling) between Java and C++ implementations are too small to have a tangible impact on
the modifiability of the systems. Most of the functional enhancements considered in the
scenario evaluation revealed no differences between Java and C++ implementations.
However, the Java implementations are consistently smaller than the C++ implementations.
After further analysis, we determined that this difference is due to the use of header files in
C++, which carry in part redundant information, and some language features such as the
automatic memory management in Java. As a result, the C++ systems show mean CDIs that
are about 20% higher than the corresponding Java implementations, i.e., 20% higher
maintenance cost when we again assume a proportional relationship between CDIs and
maintenance costs.

22

The scenario evaluation showed that porting the system to a different platform is likely to be
substantially more expensive in C++. Two factors play into this:

• The standardized language definition of Java with the very complete library of the JDK
(over 2000 classes, obviating the need to use COTS libraries), as compared to the various
C++ dialects, and a less complete set of standard libraries (about 100 classes). For
scenario 6 (porting to a different OS), an assumption was made that the commercial
libraries used are available for the new platform. This assumption may in reality not
always be fulfilled.

• The virtual machine concept of Java, which realizes its 'write once - run anywhere'
feature, gives the Java implementation an edge over the C++ implementations in two of
the ten change scenarios. On the other hand, for this statement we also assume availability
of a Java VM for the new platform, which may not always be the case.

Likewise, another scenario showed that run-time replaceability of an AP was easily
implemented in Java; in C++, a somewhat portable, CORBA-based solution is feasible but
requires substantial rework of the system.

Note, in addition, that there are factors not covered by the static measurement, that make
changes to the Java systems easier and faster, e.g., compilation time is shorter for Java (full
Java system recompile approx. 30 sec., C++ approx. 3 min.). In general, it is important to note
that results based on scenarios and static measurement are likely to provide only an
incomplete answer to our questions. It is always important to think about the limitations of the
measurement and scenarios being used and complete such studies with qualitative
considerations.

Being the result of a single case study on relatively small systems implemented in a simulator
environment, our findings concerning distribution technologies and programming languages
do not purport to have general validity. They need to be re-evaluated for other instances
where these techniques are considered for use. The study showed however, that our
measurement-based, analysis methodology can produce interpretable and traceable results,
regarding product and technology evaluation, in the context of its application.

A limitation of our methodology is that it is only applicable to systems, which are either
already implemented, or for which at least an architectural description exists, from which
structural properties can be measured (e.g., UML diagrams such as class, object, or sequence
diagrams). For comparison of design alternatives, all alternatives must be described at
comparable levels of detail.

Another more general limitation of the method presented above is that differences in CDIs,
though very helpful, are only an indirect measure of what we really want to know: the
productivity of change. However, as historical change data are collected in an organization,
relationship between differences and CDIs and differences in change effort can be established.
In addition, despite the limitation, a very small difference in CDI is unlikely to result in a
huge difference in effort. Similarly, huge differences are unlikely to result in negligible
differences in effort. Though these plausible assumptions need to be investigated, we believe
that CDIs are therefore a useful decision making instrument, when used in the context of the
methodology we provide.

6 Acknowledgements

This study was funded by the European Space Agency in the context of the "Object-oriented
languages" project, Contract No. 12889/89/NL/PA. We like to thank Uwe Brauer, Martin

23

Nitschke, and Frank Plaßmeier at Astrium GmbH for initiating and conducting this project.
We also want to thank Sema Group for providing us with the FAST Parser Technology.
Lionel Briand was also partly supported by National Science and Engineering Research
Council of Canada (NSERC).

Appendices

Appendix A: Results From Static Measurement

This appendix shows the descriptive statistics of the measures for all six systems. For each
implementation, we provide the sum, mean, standard deviation, maximum, 75th percentile,
median, 25th percentile and minimum for all measures considered.

Msr Sum Mean StdDev Max 75% Med 25% Min
CAIC 80 1.142857 2.266874 11 1 0 0 0
CMIC 47 .6714286 1.683005 12 1 0 0 0
SIM 347 4.957143 7.396505 44 8 2 0 0
PIM 386 5.514286 7.930391 44 9 2 0 0
CAEC 80 1.142857 2.254051 13 1 0 0 0
CMEC 47 .6714286 1.742241 12 1 0 0 0
SIMEC 347 4.957143 6.535157 28 8 2 0 0
PIMEC 386 5.514286 6.758232 28 8 2 1 0
ICMID 55 .7857143 1.675855 7 1 0 0 0
ICMIID 66 .9428571 2.152758 11 1 0 0 0
ICAR 395 5.642857 6.882104 28 9 2.5 0 0
WMC 492 7.028571 6.765152 29 10 5.5 1 0
NMImp 358 5.114286 4.063064 16 7 4.5 2 0
NAImp 292 4.171429 4.432984 17 6 3 1 0
LOC 2823 40.32857 35.38022 147 52 30 15 1

Table 12 C++ CORBA version, 70 classes

Msr Sum Mean StdDev Max 75% Med 25% Min
CAIC 86 .9555556 2.060387 11 1 0 0 0
CMIC 63 .7 1.494935 12 1 0 0 0
SIM 434 4.822222 6.691564 44 6 3.5 0 0
PIM 563 6.255556 9.175641 62 9 4 0 0
CAEC 86 .9555556 2.108896 13 1 0 0 0
CMEC 63 .7 2.179836 15 0 0 0 0
SIMEC 434 4.822222 7.303344 40 8 1 0 0
PIMEC 563 6.255556 7.230648 40 8 4 1 0
ICMID 78 .8666667 1.601965 7 1 0 0 0
ICMIID 103 1.144444 2.415126 14 1 0 0 0
ICAR 450 5 6.375867 28 8 3 0 0
WMC 607 6.744444 6.47998 30 9 5 3 0
NMImp 476 5.288889 3.80787 16 7 5 2 0
NAImp 334 3.711111 4.311585 17 6 2 0 0
LOC 3328 36.97778 33.577 147 45 25.5 17 1

Table 13 C++ IPC version, 90 classes

24

Msr Sum Mean StdDev Max 75% Med 25% Min
CAIC 80 1.230769 2.330298 11 2 0 0 0
CMIC 47 .7230769 1.736625 12 1 0 0 0
SIM 303 4.661538 7.029574 44 8 2 0 0
PIM 330 5.076923 7.321432 44 8 2 0 0
CAEC 80 1.230769 2.316849 13 1 0 0 0
CMEC 47 .7230769 1.798504 12 1 0 0 0
SIMEC 303 4.661538 6.134627 28 8 2 0 0
PIMEC 330 5.076923 6.225722 28 8 2 1 0
ICMID 55 .8461538 1.725098 7 1 0 0 0
ICMIID 66 1.015385 2.218476 11 1 0 0 0
ICAR 389 5.984615 7.025606 28 10 4 0 0
WMC 453 6.969231 6.857863 29 9 5 1 0
NMImp 322 4.953846 3.878751 16 7 4 2 0
NAImp 286 4.4 4.513175 17 6 3 1 0
LOC 2601 40.01538 35.57189 147 52 31 13 1

Table 14 C++ Threaded version, 65 classes

Msr Sum Mean StdDev Max 75% Med 25% Min
CAIC 67 .9710145 1.999787 10 1 0 0 0
CMIC 45 .6521739 1.443302 7 1 0 0 0
SIM 343 4.971014 7.58088 46 8 2 0 0
PIM 397 5.753623 8.423367 46 9 2 0 0
CAEC 67 .9710145 2.06491 13 1 0 0 0
CMEC 45 .6521739 1.853662 12 0 0 0 0
SIMEC 343 4.971014 6.999939 27 8 1 0 0
PIMEC 397 5.753623 7.436804 28 9 3 0 0
ICMID 64 .9275362 1.927501 9 1 0 0 0
ICMIID 77 1.115942 2.404262 12 1 0 0 0
ICAR 409 5.927536 7.280754 32 10 3 0 0
WMC 450 6.521739 6.616843 27 9 5 1 0
NMImp 353 5.115942 4.135699 15 7 4 2 1
NAImp 259 3.753623 4.244047 20 5 3 1 0
LOC 2137 30.97101 31.44789 135 39 22 12 2

Table 15 Java CORBA version, 69 classes

Msr Sum Mean StdDev Max 75% Med 25% Min
CAIC 73 .8202247 1.818852 10 1 0 0 0
CMIC 60 .6741573 1.286073 7 1 0 0 0
SIM 357 4.011236 6.823246 46 6 1 0 0
PIM 439 4.932584 7.630379 46 7 2 0 0
CAEC 73 .8202247 1.939786 13 1 0 0 0
CMEC 60 .6741573 2.255172 15 0 0 0 0
SIMEC 357 4.011236 6.476346 27 6 1 0 0
PIMEC 439 4.932584 6.888392 28 6 1 1 0
ICMID 65 .7303371 1.737056 9 1 0 0 0
ICMIID 78 .8764045 2.162807 12 1 0 0 0
ICAR 442 4.966292 6.796472 32 7 2 0 0
WMC 492 5.52809 6.136867 27 7 3 2 0
NMImp 411 4.617978 3.98436 16 6 3 2 1
NAImp 275 3.089888 3.984745 20 4 2 0 0
LOC 2235 25.11236 28.80713 135 30 15 6 2

Table 16 Java IPC version, 89 classes

25

Msr Sum Mean StdDev Max 75% Med 25% Min
CAIC 67 1.046875 2.058121 10 1 0 0 0
CMIC 45 .703125 1.487297 7 1 0 0 0
SIM 296 4.625 7.103543 45 8 2 0 0
PIM 336 5.25 7.60117 45 8.5 2 0 0
CAEC 67 1.046875 2.1264 13 1 0 0 0
CMEC 45 .703125 1.916343 12 0 0 0 0
SIMEC 296 4.625 6.639229 27 7.5 1 0 0
PIMEC 336 5.25 6.779989 27 9 2.5 0 0
ICMID 64 1 1.984063 9 1 0 0 0
ICMIID 77 1.203125 2.476427 12 1 0 0 0
ICAR 402 6.28125 7.441771 32 10.5 4 0 0
WMC 414 6.46875 6.725853 27 8.5 5 1 0
NMImp 318 4.96875 3.999876 15 7 4 2 1
NAImp 254 3.96875 4.331387 20 5 3 1 0
LOC 1982 30.96875 31.86577 135 41.5 21.5 10 2

Table 17 Java Threaded version, 64 classes

Appendix B: Change difficulty indices
For each of the four domain measures, the following four tables show the system-level CDIs
obtained for each of the six systems (rows) and ten scenarios (columns).

Domain
Measure

Scenario Java
Threaded

Java IPC Java
CORBA

C++
Threaded

C++ IPC C++
CORBA

S1 17.525 17.525 17.525 22.35 22.35 22.35
S2 6.9 6.9 6.9 8.1 8.1 8.1
S3 370.5 372.85 375.7 417.1 421.35 424.45
S4 15.55 17.9 20.75 46.85 51.1 54.2
S5 3.1 5.45 8.3 4.4 8.65 11.75
S6 23.2 23.2 23.2 327.525 340.375 328.975
S7 6.75 6.75 6.75 5.55 5.55 5.55
S8 28.575 28.575 28.575 24.675 24.675 24.675
S9 49.875 49.875 49.875 62.45 62.45 62.45

Method
size

S10 28.6 74.35 48.1 34.525 110.275 56.275

Table 18 System-level CDIs for Method Size
Domain
Measure

Scenario Java
Threaded

Java IPC Java
CORBA

C++
Threaded

C++ IPC C++
CORBA

S1 2.975 2.975 2.975 3.025 3.025 3.025
S2 0 0 0 0 0 0
S3 25.25 34.45 33.75 26.75 35.9 35.2
S4 2.95 4.65 3.95 1.375 3.025 2.325
S5 0.85 2.55 1.85 0.85 2.5 1.8
S6 4.7 5.2 5.2 37.975 41.525 39.675
S7 0.05 0.05 0.05 0.05 0.05 0.05
S8 0.525 0.525 0.525 0.575 0.575 0.575
S9 2.425 2.425 2.425 2.6 2.6 2.6

Export
Coupling

S10 1.7 3.35 12.3 1.55 3.25 12.05

Table 19 System-level CDIs for Export Coupling

26

Domain
Measure

Scenario Java
Threaded

Java IPC Java
CORBA

C++
Threaded

C++ IPC C++
CORBA

S1 2.65 2.65 2.65 2.4 2.4 2.4
S2 0.7 0.7 0.7 0.7 0.7 0.7
S3 40.4 40.5 40.45 45.65 45.9 45.7
S4 1.525 1.625 1.575 5.625 5.875 5.675
S5 0.75 0.85 0.8 0.75 1 0.8
S6 2.25 2.25 2.25 28.775 29.775 28.925
S7 0.7 0.7 0.7 0.85 0.85 0.85
S8 3.55 3.55 3.55 3.675 3.675 3.675
S9 2.125 2.125 2.125 4.5 4.5 4.5

Attribute
Size

S10 0.8 7.55 2.3 0.75 9 3

Table 20 System-level CDIs for Attribute Size
Domain
Measure

Scenario Java
Threaded

Java IPC Java
CORBA

C++
Threaded

C++ IPC C++
CORBA

S1 4.825 4.875 4.875 4.825 4.825 4.825
S2 2.25 2.3 2.3 2.2 2.2 2.2
S3 75.15 76.7 78.55 74.5 75.8 77.1
S4 2.825 2.875 4.725 10.725 11.275 12.575
S5 1.15 1.2 3.05 1.25 1.8 3.1
S6 2.65 2.65 2.65 21.1 23.075 21.45
S7 0.9 0.9 0.9 0.85 0.85 0.85
S8 3.85 3.85 3.85 3.725 3.725 3.725
S9 5.95 6.5 6.5 6.5 7.05 7.05

Method
Invocation

S10 7.925 8.1 8.85 8.1 19.35 8.1
Table 21 System-level CDIs for Method Invocations

27

References

[BCK98] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Addison-Wesley, 1998.

[BDPW98] L. Briand, J. Daly, V. Porter, J. Wüst, “A Comprehensive Empirical Validation of Product
Measures for Object-Oriented Systems”, Journal of Systems and Software 51 (2000), p. 245-273.

[BMB96] L. Briand, S. Morasca, V. Basili, “Property-Based Software Engineering Measurement.” IEEE
Transactions on Software Engineering, 22 (1), 1996, p. 68-86

[BWIL99] L. Briand, J. Wüst, S. Ikonomovski, H. Lounis, “Investigating Quality Factors in Object-Oriented
Designs: An Industrial Case Study”, Proceedings of the 21st International Conference on Software
Engineering, Los Angeles, CA, May 1999, p. 345-354.

[BWL99] L. Briand, J. Wüst, H. Lounis, “Using Coupling Measurement for Impact Analysis in Object-
Oriented Systems”, Proceedings of the 19th International Conference on Software Maintenance,
Oxford, UK, 1999, p. 475-482.

[Cap88] J. Capon, “Elementary Statistics for the Social Sciences”, Wadsworth Publishing Company,
Belmont, Ca., 1988.

[CDK98] S. Chidamber, D. Darcy, C. Kemerer, “Managerial use of Metrics for Object-Oriented Software:
An Exploratory Analysis.” IEEE Transactions on Software Engineering, 24 (8), 1998, p. 629-639

[CK94] S.R. Chidamber, C.F. Kemerer, "A Metrics Suite for Object Oriented Design", IEEE Transactions
on Software Engineering, 20 (6), 476-493, 1994.

[Dun89] G. Dunteman. "Principal Component Analysis", Sage University Paper 07-69, Thousand Oaks,
CA,1989.

[Eva97] W. Evanco, “Poisson Analyses of Defects for Small Software Components”, Journal of Systems
and Science 38 (1), 27-36, July 1997.

[IEEE90] IEEE, "IEEE Standard Glossary of Software Engineering Terminology", IEEE Std. 610.12-1990,
1990.

[ISO97] ISO/IEC 9126-2 Draft Technical Report “Information Technology – Software Quality
Characteristics Metrics Part 2 – External Metrics”, 1997.

[JCJO92] I. Jacobson, M. Christerson, P. Jonsson, G. Overgaard, "Object-Oriented Software Engineering: A
Use Case Driven Approach", ACM Press/Addison-Wesley, Reading, MA, 1992.

[MK96] J. Munson, T. Khoshgoftaar, “Software Metrics for Reliability Assessment”, in M. Lyu (ed.),
“Software Reliability Engineering”, McGraw-Hill, 1996.

[O98] M. Ochs, “M-System - Calculating Software Metrics from C++ Source Code”, Internal Fraunhofer
IESE Report No. 005/98, 1998.

[Sem97] Sema Group, “FAST Audit-J & C++ Programmer’s Manual”, 1997.

[UML1.3] Unified Modeling Language, version 1.3, http://www.omg.org/uml/

