

ISERN 99-16 1

The Impact of Design Properties on Development Cost
in Object-Oriented Systems

Lionel C. Briand
Carleton University

Systems and Computer Engineering
1125 Colonel By Drive

Ottawa, ON, K1S 5B6, Canada
briand@sce.carleton.ca

Jürgen Wüst
Fraunhofer Institute for

Experimental Software Engineering
Sauerwiesen 6

67661 Kaiserslautern, Germany
wuest@iese.fhg.de

Technical Report ISERN-99-16

ABSTRACT
In the context of software cost estimation, system size is widely taken as a main driver of system development effort. But other
structural design properties, such as coupling, cohesion, complexity have been suggested as additional cost factors. In this
paper, using effort data from an object-oriented development project, we empirically investigate the relationship between
class size and the development effort for a class, and what additional impact structural properties such as class coupling
have on effort.
We use Poisson regression and regression trees to build cost prediction models from size and design measures, and use
these models to predict system development effort. We also investigate a recently suggested technique to combine regression
trees with regression analysis, which aims at building more accurate models.
Results indicate that fairly accurate predictions of class effort can be made based on simple measures of the class interface
size alone (mean MREs below 30%). Effort predictions at the system level are even more accurate as, using Boostrapping,
the estimated 95% confidence interval for MREs is 3%-23%. But more sophisticated coupling and cohesion measures do not
help to improve these predictions to a degree that would be practically significant. However, the use of hybrid models, com-
bining Poisson regression and CART regression trees clearly improves the accuracy of the models, as compared to using
Poisson regression alone.

Keywords
Cost estimation, object-oriented measurement, empirical validation

1 INTRODUCTION
The problem of cost estimation in software engineering has been addressed by many articles and books [3]. Research shows
that many factors can affect the development cost of software projects, including human, organization, and process factors.
However, one important factor is the size of the product to be developed [3]. Many measures of size have been proposed,
ranging from source lines of code to functional size measures such as function points. Size may not only be measured in vari-
ous ways, counting different types of artifacts, but at different points in time ranging from requirements analysis to coding. In
addition to size, many other product properties have been mentioned as potential fault-proneness and cost factors such as
complexity, cohesion, and coupling [5][6]. Choosing appropriate measurement for size or any other properties depends on the
objective of measurement, the time at which measurement will be taken during the development process, and the type of in-
formation available at that time in a given organization. We focus on the impact of object-oriented design properties on de-
velopment effort.
This paper has two related but distinct objectives. First, we simply want to better understand the nature of the relationships, if
any, between design product properties and cost in object-oriented (OO) systems. Does size, based on design information,
show a strong relationship to cost? What additional impact do properties show such as complexity, cohesion, or coupling? Is
their impact of any practical significance? Second, we would like to get an idea of how accurate can cost predictions be based
on such design information, at different stages of the design. Although that answer depends on the specific context of appli-
cation, e.g., application domain or stability of development process, our aim is here to determine whether this is likely to be
feasible at all. We will base our results on a system developed in C++ (described in [20]) for which cost data at the class level
has been collected. The fine granularity level of the data collection allows us, as described below, to provide initial answers
to the questions stated above.

ISERN 99-16 2

The paper starts by a description of the research method we use here, including also the data set from which the results are
drawn. Then related work is briefly presented and compared to the objectives of our paper. Section 5 then provides the analy-
sis results in a structured manner. Conclusions and future work are presented in Section 6.

2 RESEARCH METHOD

2.1 General Method
Answering the questions stated above regarding the relationships between design properties and development cost requires a
careful analysis of real-project data. No theory regarding the many design factors that can potentially impact cost can fully
address such research objectives. They can only be tackled through empirical studies, such as the one presented here. As a
basis for this paper, we will use effort data collected on a C++ system (Section 2.3) and will analyze the source code of that
system to extract design information using an analyzer we have developed. We will then seek to analyze the relationships
between design properties and effort. Though we have initial hypotheses regarding how design properties impact develop-
ment effort, we cannot a priori make any assumption regarding the relationships between properties and effort, the interac-
tions of these properties, and their relative impact on effort. Because of the exploratory nature of the study, we will use a
number of modeling techniques to investigate the issues previously mentioned.

2.2 Study Variables and Unit of Analysis
For each class, effort was collected and accounted for designing and coding the class, documenting it, testing and correcting
it. So, only unit and integration testing effort was collected for each class, but system or acceptance testing effort could not be
easily associated with any particular class.
It makes sense to see system and acceptance testing effort as dependent on the whole system’s properties rather than any par-
ticular class subset. Looking at testing effort involving the whole system would force us to use the system as unit of analysis
and require data on a large number of systems, which would be extremely difficult to obtain. As a consequence, our analysis
will be incomplete in the sense that some development effort (i.e., system and acceptance test) will not be taken into consid-
eration. However, such an analysis is still useful as it determines the impact of design properties on a substantial part of the
development effort and does not require data on a large number of projects.

2.3 Data Collection
The product under study is a graphical and interactive editor for music scores, called LIOO [11]. The system was imple-
mented in C++ on a Linux platform. It was developed by staff members at the University of Florence, using an iterative de-
velopment process described in [27]. In this study, we have analyzed the version resulting from the first iteration. Seven de-
velopers were involved in creation of this first iteration. This version of the system is composed of 103 classes, totaling
23KLOC. Reused libraries (XVGAlib for the GUI) and automatically generated code (yacc/lex) that are not within the scope
of this study and are not included in these figures.
Effort data was collected through questionnaires distributed to the seven developers on the project that worked in the first
iteration. Throughout development, developers continuously kept a log of their activities to track the development effort per
class. The total effort recorded was 393.3 person-hours. Design properties were collected through a set of design measures
including most of the design measures proposed to date in the literature (see [5],[6] for an in-depth discussion and the short
definitions for the measures in the Appendix). We classified measures as measuring one of the following attributes: size, cou-
pling, cohesion, or inheritance.
As stated above, the design information we use here to quantify design properties can potentially be extracted from UML
diagrams. But, for the sake of convenience, we used the source code as an analyzer was readily available and since, like for
any post-mortem study of that type, the source code is readily available and complete. This has two main consequences on
the research presented here. On the one hand, our results may be cleaner as we get the final information regarding the design
properties of the system classes, whereas early design diagrams may have shown discrepancies with the final product. On the
other hand, it is clear that any prediction capability of the models presented here will be optimistic as they will not account
for the uncertainty and changes occurring during a project, where design decisions may be constantly changing and under
refinement. In typical project situations, however, such changes in design would warrant updating predictions and project re-
planning. To conclude, the results presented here should be interpreted as a feasibility study assessing what can possibly be
achieved under optimal conditions (e.g., stable development process and methodologies, stable early design artifacts), rather
than realistic figures of cost estimation accuracy. This is, however, a necessary first step.

2.4 Data Analysis Procedure
At a high level, our analysis will proceed as follows
1 We will first look at the frequency distributions of our design measures across the classes of the system. This is necessary

in order to explain some of the results that follow, and differences across studies, including future replications of this study.

ISERN 99-16 3

2 We will then use Principal Component Analysis (PCA) [15] to determine the dimensions captured by our design measures.
It is common in software engineering, like in other fields, to have many collinearities between measures capturing similar
underlying phenomena. In particular, PCA will help us better interpret the meaning of our results in the subsequent steps.

3 Univariate regression analysis looks at the relationships between each of the design measures we investigate and cost. This
is a first step to identify potential cost predictors to be used in the next step and to identify what types of measure are sig-
nificantly related to cost. Ordinary Least Squares (OLS) regression is the most commonly used regression technique for
cost modeling\. However, since our dependent variable is always positive and is highly non-normal in its distribution
(skewed), we will use a log-linear model assuming Poisson distributed effort predictions: Poisson regression. This choice
will be further discussed in the next section. Effort predictions will then be Poisson distributed and always positive. All
bivariate relationships will be checked for over-influential observations that could bias the result, e.g., the significance of
the result depends on the presence of one observation. This is important as we want our results to be stable.

4 Multivariate analysis also looks at the relationships between design measurement and cost, but considers design measures
in combinations, as covariates in a multivariate model predicting cost. We will also use Poisson regression here combined
with a forward stepwise variable selection procedure1 [16]. In addition, we use here a method to improve the models’ pre-
dictive accuracy by combining Poisson regression and regression trees (an adaptation of [29]). The goal of multivariate
analysis is to determine what levels of predictive accuracy can be achieved in terms of cost estimation, during subsequent
stages of design. In addition, it tells us about what kind of design measurement seems to play a more predominant, practi-
cally significant role for cost prediction. All results will be checked for the presence of over-influential observations.

5 Apply cross validation [30], in order to get a more realistic estimate of the predictive power of the multivariate prediction
models, when they are applied to data sets other than those the models were derived from. In short, a V-cross validation di-
vides the dataset into V parts, each part being used to assess a model built on the remainder of the dataset. In our study, we
will divide our 103 observations dataset into 10 randomly selected parts and perform a 10-cross validation.

6 When we apply the prediction model to estimate project effort, we obtain just one predicted effort value. Though we may
be particularly lucky in our case study and get a good project effort prediction, this is unsatisfactory as we know there is
uncertainty in such a prediction. We use a simulation technique called Bootstrapping to build, for example, a 95% confi-
dence interval for the predicted system effort. As discussed below, this will shed more light on the uncertainty attached to
the point estimates that could be expected from our effort model.

3 MODELING TECHNIQUES
We will here briefly introduce and motivate the modeling techniques used in this study and aforementioned.

3.1 Poisson Regression
Our dependent variable, effort, is always positive and, although the average effort is modest (3.86 hours), the distribution is
skewed to the right (the 10% and 90% percentiles are 0.2 and 12.7, respectively), beyond what a normal distribution could
model. For that reason, log-linear ordinary least-squares (OLS) regression models are frequently used in software engineering
cost-estimation models [3]. For example, one can fit the regression equation nn xxy βββ +++= L110ln . Thus the loga-
rithmic transformation can address the distribution problem mentioned above, and also decreases the weigh of extreme ob-
servations with high values in the dependent variable. However, this logarithmic transformation introduces a systematic bias
in the predictions, i.e., the sum of predicted and actual effort values over all observations are not equal. This is due to the fact
that E(ln y), the expected value of ln y, tends to be lower than ln E(y) (Jensens inequality)2. But a log-linear model predicts
E(ln y) whereas we wish to obtain an unbiased prediction of E(y). Unbiased prediction is a crucial property in our application
context since the sum of the predicted effort over all classes is used as an estimate for the total project effort.
To compensate for this bias, we have to model y directly using a non-normal distribution, e.g., Poisson distribution. The
Poisson distribution is usually used to model rare events generated by a Poisson process, as measured by nonnegative inte-
gers. Though effort is in theory not discrete, it is measured in a discrete form (i.e., in our case, the minimum time measure-
ment unit was 3 minutes (0.05 person hours)). In addition, large effort values are rare and, as mentioned above, the effort
distribution show similar characteristics to the Poisson distribution. It is important to note that those are typical characteristics
of effort distributions and are not specific to this data set [25]. From a practical perspective, as we will see below, this un-
usual approach to modeling effort predictions yields accurate, unbiased results based on cross-validation3.
A set of modeling techniques, known as Generalized Linear Models, has been devised (see [24] for a thorough discussion) in
order to cope with situations where relationships are not linear and the error distributions are not normal. In our study, we

1 We tried different variable selection strategies, e.g., backward selection strategies using only variables with highest loadings in PCA (each capturing a
specific dimension). We observed no notable improvement.
2 Jensen's inequality: For any random variable X, if g(X) is a convex function, then E(g(X)) ≥ g(E(X))
3 Most of the software engineering cost estimation literature is concerned with sizing entire projects. When there is no need to add up predicted values, hav-
ing an unbiased estimator is not a crucial property, and the use of log-linear models with normal errors may be appropriate.

ISERN 99-16 4

will use a generalized linear model (GLM) with a logarithm link function (log effort is linearly related to design measures)
and a Poisson error distribution. This is also known as the Poisson regression model [22].
In Poisson regression, the dependent variable y is assumed to have Poisson distribution with parameter µ, i.e.,

!
)|Pr(

y
ey

yµµ
µ−

=

The parameter µ is both the expected value and variance of y: µ=E(y)=Var(y), an important characteristic of the Poisson dis-
tribution known as equidispersion.
In the Poisson regression model, y is assumed to be Poisson distributed with the conditional mean4 being a function of the
independent variables X=x1,… ,xn, given by the regression equation

nnxxe βββµ +++= L110ˆ .

The probability distribution of y, given x1,… ,xn, is therefore

!
ˆ

),,|Pr(
ˆ

1 y
exxy

y

n
µµ−

=L .

For a given data set, the regression coefficients nββ ,...,0 can be estimated through maximization of a likelihood function
based on the above probability distributions.

3.2 Regression Trees
Regression tree analysis [10] is a data mining technique that does not require any functional form assumption, as opposed to
regression analysis. It simply builds a partition tree of the data set. The partition tree is built in such a way that its terminal
nodes are more and more consistent with respect to the dependent variable (our study: effort). Consistency is measured in
terms of effort variability (least absolute deviance [10]). The tree is also built so that a minimal number of observations are
present in the terminal nodes (our study: 10). Each path of the tree represents a rule that, in our case, relates the design meas-
ures to effort. For example:
NMIMP>5.5 AND NMIMP=9.5 AND NA=6 AND NM>24.5 => Median Effort = 1.0
This rule states that when the number of methods locally defined (NMIMP), the total number of methods (NM), and the
number of attributes (NA) are within a certain range, then the median effort can be predicted to be of a certain value (the
mean can be derived as well). Regression trees are good at modeling non-linear structures in the data but are not particularly
good at modeling linear relationships. Other specificities are that they can model local trends, i.e., trends only present in a
subset of the data, and interactions between covariates, i.e., design measures, in a simple manner. In a way, regression trees
are complementary to regression models in terms of the structures they model. We will therefore attempt to combine Poisson
regression and regression trees as specified below.

3.3 Combining Regression Trees and Poisson Regression Analysis
Adapting some of the recommendations in [29], we will combine the two modeling techniques in a hybrid model by follow-
ing the process below:
• Run regression trees by specifying that terminal nodes should contain at least 10 observations – this number is somewhat

arbitrary but it should be sufficiently large to capture significant trends. For larger data sets, one can afford to use larger
numbers.

• Add dummy variables (binary) to the data set by assigning observations to terminal nodes in the regression trees, i.e., as-
sign 1 to the dummy variable for observations falling in its corresponding terminal node. There are as many dummy vari-
ables as terminal nodes in the tree.

• Run stepwise Poisson regression using both design measures and the dummy variables as potential covariates.
This process takes advantage of the modeling power of Poisson regression while still using the specific structures that regres-
sion trees can capture. As shown in [3], there exist other ways to combine regression trees and regression analysis, but they
are not nearly as effective.

4 Poisson regression assumes: E(y | x1, … , xn)=Var(y | x1, … , xn). This assumption was tested on our dataset and no severe overdispersion was noted for the
multivariate models (for univariate models, overdispersion is present, as will be shown in Section 5.4). When this is the case in other datasets, the reader is
invited to use a generalization of Poisson regression referred to as negative binomial regression [22].

ISERN 99-16 5

3.4 Assessing and Comparing Models’ Accuracy
A usual way to compare cost models is to look at the Magnitude of Relative Error (MRE) or, to a lesser extent, the Absolute
Relative Error (ARE) of their effort predictions5. In this study we will look at these criteria at two distinct levels: class effort
prediction and system effort prediction. For each model investigated, we will have 103 class effort MREs and AREs, either
resulting from the fit of the model or its predictions from a 10-cross validation. They are calculated as follows: For a class i,
i=1,… ,103, let ieff be its actual effort, and iffeˆ the predicted effort. Then,

|ˆ| iii ffeeffARE −= , and iiii effffeeffMRE /|ˆ| −= .

Class MREs/AREs can be easily compared across models by performing a paired statistical test checking whether differences
between models are statistically significant. Both parametric (paired t-test) or non-parametric (Wilcoxon T test) tests can be
used [16]. The paired t-test typically works better when population distributions are approximately normal and tends to be
conservative otherwise. Because we do not enforce the models we compare to be nested, we will perform 2-tailed tests, at a
level of significance of α = 0.05.
At the system level, after performing cross validation, we will only have one MRE value per model, since the predicted sys-
tem effort is the result of summing up class predicted efforts as follows:

∑ −=
i ii ffeeffARE)ˆ(and ∑=

i ieffAREMRE / . (1)

The expectation is that, for unbiased models, over-and under-prediction of individual class estimates mostly cancel each other
out and yield an unbiased system effort estimate. However, having one predicted effort value is unsatisfactory as we know
there is uncertainty in such a prediction. We would like, for example, to have a 95% confidence interval for such predictions
so that model users would be able to make more informed decisions, knowing the uncertainty of the prediction. One way to
obtain such a confidence interval is to use bootstrapping [26], a nonparametric, simulation-based technique to draw statistical
inferences from (small) samples. In our case, we build the 95% error interval of the MRE/ARE for system effort prediction,
following the bootstrapping procedure below:
1. Repeat 1000 times: randomly sample, allowing replacement, 103 class MRE/ARE values out of our 103 class

MRE/ARE values we have for each model (obtained from cross validation). This steps yields 1000 samples of 103 ob-
servations, each randomly and slightly different from the original sample, as some of the original observations will not
have been sampled whereas others will have been sampled several times. That form of sampling is sometimes called “re-
sampling”.

2. For each of the 1000 samples generated through Step 1, we compute the system MRE/ARE value, which is computed
using equation (1).

3. The 1000 system-level MRE/ARE values obtained from the previous step form an empirical distribution. Compute the
2.5% and 97.5% percentiles of this distribution, which represent, based on bootstrapping theory, a good estimate of the
95% error interval for the system effort prediction MRE/ARE.

In short, through the re-sampling of existing observations, bootstrapping enables the estimation of any sample statistic distri-
bution, e.g., mean, median, standard deviations are common examples. Although computationally intensive, it has been
shown bootstrapping works well with small samples [26]. The basic assertion behind bootstrapping is that the relative fre-
quency distribution of a sample statistic (MRE/ARE in our case) calculated from the “resamples” is an estimate of the sam-
pling distribution of this statistic. Theoretical work and simulations have shown this is the case when the number of resam-
ples is large (1000 is a standard number).

4 RELATED WORK
There exists a substantial body of work on project cost estimation based on various project characteristics (references are
provided in [3]). However, studies such as the present one, which investigate cost drivers for individual modules or classes
within a project, are rare. There may be several reasons for this
• Such studies require effort be collected on a per-class-basis in a consistent and reliable manner. This is more difficult than

accounting only for the total project cost.
• From a practical perspective, such a fine granularity may not be needed, as the typical application of a cost model is to

estimate, at an early stage, the cost and risk associated with entire projects.
However, as has been discussed in Section 2.2, such fine-grained analyses allow us to learn about product-related cost drivers
at a faster pace, with fewer projects. We are aware of two such studies:

5 We prefer here to use the MRE and ARE to assess the predictive power of our models, over other goodness-of-fit statistics applicable to ML estimation
such as the loglikelihood or pseudo-R2. The MRE and ARE are independent of the modeling techniques used, they are expressed in the units of the depend-
ent variable, and are therefore easier to interpret and allow for straightforward comparisons between models.

ISERN 99-16 6

• Nesi and Querci [28] propose a set of complexity and size code measures (based on counts of methods, attributes, and
LOC or cyclomatic complexity), and aim to build effort prediction models from these. They classify their measures into ‘a
posteriori’ measures that are available only after implementation, and ‘predictive’ measures that can be collected earlier.
Using industry data, and OLS regression, they show that models explaining about 80% of the variation in class effort can
be built from either a-posteriori or predictive measures. I.e. the predictive measures can explain variation in effort about as
well as a-posteriori measures. This result is consistent with the findings in this paper.

• Chidamber, Darcy, and Kemerer [14] have investigated the six of the design measures proposed in [13] (a subset of the
measures used in our study). Their aim was not to build accurate prediction models, but rather to test the ability of the
measures to identify high effort and low productivity classes. They find dichotomized versions of CBO and LCOM2 to be
good indicators of such classes, again with small loss in predictive power when the measures are applied during early
phases.

Both studies used a different modeling technique (OLS), no measures of goodness of fit other than the R2 were given6, and no
cross-validation was attempted. It is therefore not possible to quantitatively compare the results with the current study.

5 ANALYSIS RESULTS
This section presents the results obtained by following the procedure described in Section 2. Additional details regarding the
analysis procedure itself are provided.

5.1 Descriptive Statistics
Looking at the distribution statistics is important in order to interpret the subsequent results of the analysis. For example, it is
important to know that some measures show little variation, meaning for instance that a design mechanism is seldom used.
This might explain some missing trends in the data. In addition, frequency distributions can tell us whether the system we
look at is somewhat representative and shows unusual patterns, e.g., no inheritance, extremely deep inheritance hierarchies.
Again, this may be important to determine whether we can generalize our results or to explain any particular result.
Based on Table 1, we can notice a number of interesting results. First, as opposed to what was observed in previous publica-
tions ([4][8][13][14]), the use of inheritance mechanisms is here substantial. The average depth of classes in the inheritance
hierarchy is 2 and only 11 out of 103 classes are not derived from another class. For most classes, the number of inherited
methods and attributes surpasses the number of locally defined methods and attributes. Furthermore, the amount of inheri-
tance-based coupling is about the same as non-inheritance based coupling, whereas it was only a fraction of it in previous
studies. All this tells us that we are dealing here with a design that is really object-oriented in nature. Surprisingly, some
classes show absolutely no coupling based on direct method invocation (minimum value of CBO=0) and seem only to be
invoked through polymorphic method invocations. This shows how important it is to take into account polymorphism when
measuring coupling.

Measure Mean StdDev Max P75 Med P25 Min
CBO 3.883 8.127 72 3 2 1 0
CBO’ 3.204 8.063 72 2 1 1 0
RFC1 340.204 139.801 607 359 339 334 0
RFC8 450.223 176.127 783 511 415 401 0
MPC 12.214 25.881 189 10 4 3 0
PIM 51.592 174.731 1202 36 5 3 0
PIM_EC 51.592 47.161 311 56 48 27 0
ICP 73.592 221.020 1557 57 11 6 0
IHICP 15.379 53.949 392 7 0 0 0
NIHICP 58.214 180.780 1287 48 8 6 0
DAC 0.495 1.145 5 0 0 0 0
DAC’ 0.408 0.964 5 0 0 0 0
OCAIC 0.495 1.145 5 0 0 0 0
OCAEC 0.495 1.037 8 1 0 0 0
ACMIC 0.320 0.782 4 0 0 0 0
OCMIC 1.981 4.824 31 1 0 0 0
DCMEC 0.320 2.766 28 0 0 0 0
OCMEC 1.981 8.882 83 0 0 0 0
AMMIC 6.078 19.734 165 5 0 0 0
OMMIC 6.136 10.908 67 4 3 1 0

6 We have not provided R2 goodness-of-fit values here as the R2 for Poisson regression does not have a simple, straightforward interpretation as the OLS R2,
and conclusions we would draw from such values would be similar to the ones we draw from MRE values

ISERN 99-16 7

DMMEC 6.078 31.670 250 0 0 0 0
OMMEC 6.136 31.056 311 4 0 0 0
LCOM1 80.320 239.885 1676 36 15 10 0
LCOM2 70.320 229.982 1641 36 15 10 0
LCOM3 6.369 6.155 40 7 5 4 0
LCOM4 4.650 3.044 22 6 5 2 0
LCOM5 0.974 0.323 1.25 1.2 1.125 .7888 0
COH 0.137 0.243 1 .21666 0 0 0
CO -0.107 0.229 1 0 -.143 -.25 -.5
LCC 0.218 0.353 1 .34736 0 0 0
TCC 0.148 0.254 1 .30303 0 0 0
ICH 9.136 28.964 206 6 0 0 0
DIT 1.981 1.029 4 3 2 1 0
AID 1.947 1.034 4 3 2 1 0
CLD 0.379 0.806 4 0 0 0 0
NOC 0.922 2.295 16 0 0 0 0
NOP 0.922 0.362 2 1 1 1 0
NOD 2.029 9.129 89 0 0 0 0
NOA 2.029 1.089 5 3 2 1 0
NMO 4.447 2.950 18 6 5 1 0
NMA 5.184 9.767 51 5 1 0 0
SIX 0.298 0.277 .8333 .445 .207 .0909 -1
NA 8.194 7.606 30 13 4 3 1
NAIMP 1.728 3.335 16 2 0 0 0
NAINH 6.466 7.200 28 5 4 3 0
NM 38.699 31.070 158 40 25 24 0
NMIMP 9.631 10.263 59 9 6 5 0
NMINH 29.068 28.816 130 24 19 17 0
NUMPAR 4.990 9.439 42 4 1 0 0

Table 1: Descriptive statistic for all measures

There are no friendship relationships in the LIOO system. Consequently, the measures of coupling between such classes (the
F**EC and IF**IC measures of the suite by Briand et al [7]) do not vary and are removed from further analysis. There is no
aggregation coupling between classes related via inheritance (measured by ACAIC and OCAEC), these measures were also
discarded. Because there is only aggregation between “other” classes, DAC and OCAIC yield identical values, and DAC was
removed from further analysis to avoid redundancy.

5.2 Principal Component Analysis

5.2.1 PCA with coupling measures
The results of principal component analysis on the coupling measures are summarized in Table 2. In order to better be able to
interpret the PCs, we consider the rotated components. This is a technique where the PCs are subjected to an orthogonal rota-
tion. As a result, the rotated components show a clearer pattern of loadings, where the variables either have a very low or
high loading, thus showing either a negligible or a significant impact on the PC. There exist several strategies to perform such
a rotation. We used the varimax rotation, which is the most frequently used strategy in the literature. See [15] for more details
on PCA and rotated components. The first three rows in Table 2 report the eigenvalue, percentage of variation explained for
each PC, and the cumulative percentage of variation explained. The remaining rows then show the loading of each measure in
each PC. Loadings with absolute values larger than 0.8 indicate a substantial correlation with the PC, and are set in boldface.
Based on Table 2, we can see coupling measures capture roughly 5 dimensions, i.e., principal components. Based on the
highest loadings within each principal component, they can be interpreted as follows:

PC1 All the measures with high loadings are import coupling measures, where coupling based on method invo-
cations, and where inheritance-based coupling and/or polymorphic coupling are taken into account. These two kinds
of coupling tend to occur together since, in C++, method invocations in one’s own inheritance hierarchies are poly-
morphic by default.
PC2 This dimension is driven by both general coupling measures (CBO, CBO’) and export coupling through
method invocations. For some reason, the number of coupled classes for a given class is mainly driven by the num-
ber of method invocations to that class.

ISERN 99-16 8

PC3 This PC contains measures OCAEC and OCMEC counting export coupling by unrelated classes (unrelated
by inheritance). The RFC measures measuring size (inherited and non-inherited) and coupling by method invoca-
tions, are inversely correlated to export coupling. This indicates that there some relatively small and self-contained
classes (=> low RFC) which provide small, universal services that are being used a lot (=> high OCAEC, OCMEC).
PC4 This is mainly driven by static method invocation and aggregation import coupling. So no inheritance or
polymorphism-based coupling is taken into account here and that is what probably bring these measures together.
Again, this show that inheritance bring orthogonal coupling dimensions that are important to measure.
PC5 This clearly captures export coupling to descendent classes.

 PC1 PC2 PC3 PC4 PC5
EigenValue: 8.984 3.956 2.381 1.543 1.432
Percent: 42.782 18.837 11.340 7.347 6.819
CumPercent: 42.782 61.618 72.958 80.305 87.124
CBO 0.223 -0.929 0.002 0.186 0.147
CBO’ 0.156 -0.945 0.045 0.175 0.158
RFC1 0.412 0.212 -0.713 -0.219 0.109
RFC8 0.383 0.238 -0.731 0.062 0.018
MPC 0.905 -0.055 -0.109 0.371 -0.044
PIM 0.930 -0.117 -0.015 0.137 0.268
PIM_EC 0.302 -0.685 -0.198 0.122 0.458
ICP 0.929 -0.115 -0.028 0.185 0.260
IHICP 0.939 -0.110 -0.038 0.134 0.241
NIHICP 0.923 -0.115 -0.026 0.196 0.263
DAC’ 0.247 -0.235 0.114 0.813 0.314
OCAIC 0.206 -0.206 0.131 0.853 0.245
OCAEC 0.077 0.100 0.886 0.089 0.002
ACMIC 0.616 -0.078 -0.102 0.436 0.191
OCMIC 0.070 -0.506 0.178 0.636 0.123
DCMEC 0.209 -0.124 0.093 0.205 0.876
OCMEC 0.112 0.082 0.808 -0.036 0.141
AMMIC 0.973 -0.082 -0.067 0.062 -0.027
OMMIC 0.387 0.019 -0.138 0.770 -0.056
DMMEC 0.313 -0.132 0.015 0.188 0.889
Ommec -0.091 -0.970 0.089 0.075 -0.111
Table 2: Rotated Components for coupling measures

5.2.2 Principal Component Analysis for size measures
As already noticed in previous studies [4][8], there are two clearly interpretable cohesion dimensions based on Table 3:

PC1 All normalized cohesion measures are in this dimension. These measures are independent of the size of the
class, although their normalization procedures differ. Again these results show that most of the variations in the
measures that have been proposed to date do not make a substantial difference.
PC2 All non-normalized are captured here. Many of these measures have shown to be related to the size of the
class in past studies (see also Section 5.3). We have discussed in [6] whether these measures can be considered valid
measures of cohesion.

 PC1 PC2
EigenValue: 4.440 3.711
Percent: 44.398 37.108
CumPercent: 44.398 81.506
LCOM1 0.084 0.980
LCOM2 0.041 0.983
LCOM3 -0.218 0.929
LCOM4 -0.604 0.224
LCOM5 -0.878 0.057
COH 0.872 -0.113
CO 0.820 0.139

ISERN 99-16 9

LCC 0.869 0.320
TCC 0.945 0.132
ICH 0.148 0.927

Table 3: Rotated components for cohesion measures

5.2.3 PCA for Inheritance measures
Regarding Table 4, three clear dimensions, which already had been identified in previous studies [REF], can be identified
among all inheritance measures:

PC1 This dimension captures the depth of a class. The deeper the class (DIT, AID), the more ancestors/parents it
has, the more likely method overriding (captured with measure NMO) is to occur.
PC2 This captures the depth of inheritance below the class.
PC3 Only the number of methods added seems of drive this dimension. It captures the size of the functionality
increment brought by the class.

 PC1 PC2 PC3
EigenValue: 4.995 1.912 1.075
Percent: 49.947 19.119 10.751
CumPercent: 49.947 69.066 79.817
DIT 0.905 0.155 -0.298
AID 0.851 0.145 -0.371
CLD -0.240 -0.853 0.010
NOC -0.129 -0.927 0.111
NOP 0.776 0.051 0.104
NOD -0.099 -0.884 0.116
NOA 0.925 0.161 -0.173
NMO 0.720 0.253 0.512
NMA -0.244 -0.221 0.806
SIX 0.712 0.220 -0.070

Table 4: Rotated components for inheritance measures

5.2.4 PCA for size measures
Regarding size, in Table 5, two main dimensions are clearly identified:
PC1 This mainly captures the inherited size (i.e., attributes, classes) from ancestor classes.
PC2 This dimension relates to locally defined attributes and methods.

 PC1 PC2
EigenValue: 4,004 2.524
Percent: 57.20 36.07
CumPercent: 57.20 93.27
NA 0.927 0.314
NAIMP -0.031 0.880
NAINH 0.993 -0.076
NM 0.970 0.215
NMIMP 0.155 0.948
NMINH 0.990 -0.106
NUMPAR 0.079 0.948

Table 5: Rotated components for size measures

5.2.5 Discussion
From a general perspective, many of the dimensions outlined by principal component analysis are consistent with previous
studies [4][8]. Variations across studies are mainly observed among the coupling dimensions. Based on our comparisons of
the system analyzed, they often reflect variations in the use of inheritance mechanisms. In a environment where the use of
inheritance follows a clear strategy, we would expect the dimensions of coupling to be more stable across systems. But this
still remains to be confirmed.

ISERN 99-16 10

From a practical perspective, the results of PCA show a large amount of redundancy among the proposed measures. This
confirms the results from previous studies and implies that design measurement could be limited to a much smaller number
of measures than the one we used here.

5.3 Correlation to size
An issue related to PCA is to look at the relationship between the design measures and size. This is important, as such a rela-
tionship is a possible explanation why certain design measures are related to effort
One way to investigate the relationship of design measures to size is to perform a principal component analysis with design
and size measures simultaneously. However, given the large number of measures considered here (over 40 measures), and the
relatively small number of observations (103), this approach seems questionable. We therefore look at the pairwise relation-
ship between design measures and a representative size measure, NMIMP (the number of Implemented methods in a class).
The measure of correlation we use is Spearman Rho. Given the skewed distribution of measures, this measure is preferred
over, e.g. Pearson’s r.

Measure Spearman’s Rho p-value
CBO 0.8097 <0.0001
CBO’ 0.6731 <0.0001
RFC1 0.3706 0.0001
RFC8 0.4414 <0.0001
MPC 0.6616 <0.0001
PIM 0.7331 <0.0001
PIM_EC 0.5797 <0.0001
ICP 0.7789 <0.0001
IHICP 0.6033 <0.0001
NIHICP 0.7453 <0.0001
DAC’ 0.5525 <0.0001
OCAIC 0.5577 <0.0001
OCAEC 0.2045 0.0383
ACMIC 0.5533 <0.0001
OCMIC 0.7650 <0.0001
DCMEC 0.3118 0.0013
OCMEC 0.1009 0.3106
AMMIC 0.5623 <0.0001
OMMIC 0.5671 <0.0001
DMMEC 0.3512 0.0003
OMMEC 0.4075 <0.0001
LCOM1 0.9540 <0.0001
LCOM2 0.7960 <0.0001
LCOM3 0.6004 <0.0001
LCOM4 0.2582 0.0084
LCOM5 -0.3463 0.0003
COH 0.4010 <0.0001
CO 0.5167 <0.0001
LCC 0.5455 <0.0001
TCC 0.5083 <0.0001
ICH 0.8221 <0.0001
DIT -0.1903 0.0541
AID -0.2391 0.0150
CLD -0.0635 0.5242
NOC -0.0814 0.4135
NOP -0.0333 0.7386
NOD -0.0718 0.4709
NOA -0.1383 0.1636
NMO 0.4029 <0.0001
NMA 0.8190 <0.0001
SIX -0.0797 0.4235

ISERN 99-16 11

NA 0.3525 0.0003
NAIMP 0.5695 <0.0001
NAINH -0.0097 0.9228
NM 0.5623 <0.0001
NMINH -0.1103 0.2675
NUMPAR 0.8184 <0.0001

Table 6: Correlation of design measures to size

From Table 6 we observe that many measures are very strongly correlated to size, for instance, Spearman Rho for ICP,
OCMIC, LCOM1, LCOM2, ICH with NMIMP ranges between 0.7 and 0.9 (see Appendix). Such strong correlations were
rare in the previous systems we analyzed [3][8]. Given the definition of the measures, a certain correlation to size is to be
expected, but we have no explanation why it is particularly strong in this system.

5.4 Univariate Analysis
This section looks at the individual relationships between design measures and the effort allocated to each individual class.
As was discussed in Section 3.1, an important assumption of the Poisson regression model is the equidispersion, i.e., that the
conditional variance Var(y|X) equals conditional mean E(y|X). In practice, we more commonly find that Var(y|X)>E(y|X),
which is known as overdispersion. In the presence of overdispersion, the significance of covariates can be overestimated. In
that case, a negative binomial regression model should be used, which is designed to take this overdispersion into account.

In the negative binomial model, we still have the regression equation nn xxe βββµ +++= L110ˆ , however, we assume a different
probability distribution of y, given x1,… ,xn. :

νµ

µν
µ

µν
ν

ν
ν

+

+Γ
+Γ=

ˆ
ˆ

ˆ)(!
)(),,|Pr(

ˆ

1 y
yxxy nL ,

with a parameter ν>0 that is estimated along with the regression coefficients nββ ,...,0 in a maximum likelihood estimation

based on the above probability distribution. It can be shown that we still have)|(ˆ XyE=µ , but µαµ ˆˆ)|(+=XyVar ,

where 1−=να . α is called the dispersion parameter. For α− >0, the negative binomial model converges towards the Poisson
model. For more details on Poisson and negative binomial regression, see [22].
Table 7 shows the results from applying univariate negative binomial regression to our model. Columns “Coeff.”, “StdErr”
and “p(coef)” indicate the estimated regression coefficient, its standard error, and p-value (i.e., probability that the coefficient
is different from zero by chance). The columns alpha and p(alpha) show the estimated dispersion parameter α and its p-value.
As a first result, we see the alphas for all measures are significantly different from zero, i.e., overdispersion is present here.
Overdispersion is a not a property of the dependent variable, but a property of a particular combination of depend-
ent/independent variables. In multivariate analysis, due to the higher number of independent variables, the data can be better
fitted, and overdispersion is less likely to be a problem.
Looking at the significance of coupling measures, we can see that most import coupling measures are significant and show
coefficients in the expected direction. Inheritance-based coupling measures seem to be associated with lower coefficients
than coupling measures involving classes in difference inheritance hierarchies. One explanation to further investigate is that
classes within hierarchies are often developed by the same programmer whereas different hierarchies are more likely to be
developed by different people. Also, export coupling measures show a much weaker impact than import coupling on effort. It
is interesting to note that previous studies showed similar results when using the number of detected faults as a dependent
variable [4][8].
With respect to cohesion measures, we can see that all cohesion measures are significant except LCOM4 and Coh. Because
they are not normalized, LCOM1 and LCOM2, like in previous studies [4][8], show a strong (quadratic) relationship with the
number of methods locally defined in classes, that is a size measure. This may explain their relationship with effort. More
importantly, normalized cohesion measures have coefficients with a sign opposite to what was expected. Our interpretation is
that many classes deep in the hierarchies redefine a few methods without defining new attributes. They access inherited at-
tributes, which are not taken into account by existing cohesion measures. They are therefore small and relatively easy to de-
velop but show a cohesion of 0. Even more surprising, when modifying the measures to take inherited attributes into account,
the results do not show substantial differences. Two factors can contribute to this phenomenon: first, the non-inherited meth-
ods may actually make only limited use of inherited attributes. Second, by taking inherited methods into account, the de-
nominator (counting a maximum possible number of connections) for some cohesion measures grows proportionally faster
than the numerator (actual number of connections).

ISERN 99-16 12

ICH shows a strong correlation with effort, but as discussed in previous papers [4][8], this measure is conceptually and statis-
tically strongly related to the size of the class. To conclude, the relationships between cohesion measures and effort are due to
other phenomena unrelated to the internal cohesion of classes. However, this does not come as a full surprise as we did not
expect cohesion to show a direct strong correlation with effort, but rather play the role of an adjustment factor. This will be
investigated in the section on multivariate analysis.
DIT and AID indicate that deeper classes require less effort. Again, this may be explained by the presence of simpler classes
deep in the hierarchies, with no locally defined attributes, that redefine existing methods.
Most size measures are significant. Measures counting the number of methods locally defined or their number of parameters
show the strongest correlation with effort. On the other hand, size measures counting the amount of inheritance are not sig-
nificant (because of the strong use of inheritance, NA and NM are mostly driven by inherited elements).

Msr Coef. Std.Err. p(coef) Alpha P(alpha)
CBO 0.1703 0.0345 <0.0001 1.2650 <0.0001
CBO’ 0.1634 0.0366 <0.0001 1.3399 <0.0001
RFC1 -0.0001 0.0008 0.9030 1.7699 <0.0001
RFC8 0.0013 0.0007 0.0640 1.7162 <0.0001
MPC 0.0373 0.0064 <0.0001 1.0272 <0.0001
PIM 0.0035 0.0014 0.0120 1.5025 <0.0001
PIM_EC 0.0148 0.0034 <0.0001 1.3891 <0.0001
ICP 0.0041 0.0014 0.0020 1.3975 <0.0001
IHICP 0.0100 0.0037 0.0070 1.5506 <0.0001
NIHICP 0.0052 0.0017 0.0020 1.3880 <0.0001
DAC’ 0.8633 0.1119 <0.0001 0.8465 <0.0001
OCAIC 0.7020 0.0848 <0.0001 0.7632 <0.0001
OCAEC 0.4377 0.2218 0.0480 1.7047 <0.0001
ACMIC 0.8765 0.1370 <0.0001 0.9605 <0.0001
OCMIC 0.2039 0.0310 <0.0001 0.9586 <0.0001
DCMEC 0.0289 0.0596 0.6280 1.7654 <0.0001
OCMEC 0.0428 0.0352 0.2240 1.7406 <0.0001
AMMIC 0.0286 0.0117 0.0140 1.5292 <0.0001
OMMIC 0.0767 0.0123 <0.0001 0.9242 <0.0001
DMMEC 0.0072 0.0045 0.1110 1.7047 <0.0001
OMMEC 0.0404 0.0172 0.0190 1.6540 <0.0001
LCOM1 0.0048 0.0009 <0.0001 1.0675 <0.0001
LCOM2 0.0046 0.0010 <0.0001 1.2402 <0.0001
LCOM3 0.0771 0.0233 0.0010 1.5154 <0.0001
LCOM4 -0.0383 0.0327 0.2420 1.7478 <0.0001
LCOM5 -2.2934 0.7496 0.0020 1.6453 <0.0001
COH 1.4052 0.9739 0.1490 1.7394 <0.0001
CO 5.3406 0.7589 <0.0001 1.1643 <0.0001
LCC 2.8036 0.3105 <0.0001 0.8101 <0.0001
TCC 4.1435 0.6990 <0.0001 1.2612 <0.0001
ICH 0.0419 0.0079 <0.0001 1.0882 <0.0001
DIT -0.5108 0.1325 <0.0001 1.5416 <0.0001
AID -0.7283 0.1331 <0.0001 1.3520 <0.0001
CLD 0.0034 0.1635 0.9840 1.7702 <0.0001
NOC 0.0123 0.0564 0.8270 1.7693 <0.0001
NOP 0.1906 0.2618 0.4670 1.7608 <0.0001
NOD 0.0078 0.0163 0.6320 1.7657 <0.0001
NOA -0.1470 0.0948 0.1210 1.7296 <0.0001
NMO 0.1111 0.0321 0.0010 1.5550 <0.0001
NMA 0.1144 0.0135 <0.0001 0.6990 <0.0001
SIX -2.7423 0.6768 <0.0001 1.5627 <0.0001
NA 0.0935 0.0189 <0.0001 1.3553 <0.0001
NAIMP 0.2847 0.0343 <0.0001 0.7303 <0.0001
NAINH 0.0140 0.0176 0.4270 1.7590 <0.0001

ISERN 99-16 13

NM 0.0185 0.0052 <0.0001 1.5185 <0.0001
NMIMP 0.1112 0.0115 <0.0001 0.5437 <0.0001
NMINH 0.0028 0.0041 0.4980 1.7620 <0.0001
NUMPAR 0.1089 0.0111 <0.0001 0.5166 <0.0001

Table 7: Univariate Analysis Results

5.5 Multivariate Analysis
Multivariate Analysis involves looking at the combined impact of all design measures (more precisely, we selected the ones
that showed a p-value below 0.25 in the univariate analysis). We have three main interrelated objectives in performing such
an analysis:
• Assess what is the goodness of fit that such cost models can achieve. This gives us an optimistic maximum bound of what

can be achieved if such models were to be developed for real use.
• Assess the additional impact of cohesion and coupling as compared to size alone. Are they of any practical significance in

terms of cost estimation?
• Assess the gain in estimation accuracy at different stages of design.

We will first build a model based on size measures only, e.g., number of attributes, methods, or parameters in the class inter-
face. This information is available earlier in the design process than coupling, cohesion, or structural complexity information.
Then we move to build models based on both size and coupling measures. Last, we make use of all available design meas-
ures, also including cohesion and complexity measures requiring detailed knowledge about the internal structure of classes.
The three categories of models we build correspond to successive stages of object-oriented design where (1) classes and their
public interfaces are identified, (2) their dependencies and relationships are established, and (3) their internal structure (i.e.,
private elements and internal invocations) is determined.
Stemming from just one case study, the particular models built here do not purport to have any general validity outside the
bounds of our case study environment. But recall that our goal here is to assess the feasibility of building such models and
their relative predictive power at different stages of the development life cycle. The focus of our multivariate analysis is
therefore to obtain an initial assessment of the feasibility of building effort prediction models based on analysis and design
information.

5.5.1 Poisson Model Based on Size Measures
Table 8 shows the results of applying stepwise Poisson regression on the subset of design size measures pre-selected based
on univariate analysis. The columns show, from left to right, the design measures selected as significant covariates in the
model (definitions of all measures are summarized in the appendix), the coefficients estimated through maximum likelihood
estimation, the associated standard error, and the p-value telling us about the significance of these coefficients (i.e., their
probability to be different from 0 by chance). All the tables reporting regression results in the paper will follow the same
structure7.
Multicollinearity [1] was determined to be negligible in this model (Conditional number = 2.63)8.

Measure Coef. Std.Err. p

NA 0.048 0.007 0.000
NAIMP 0.106 0.013 0.000
NMIMP -0.066 0.010 0.000
NUMPAR 0.115 0.010 0.000
Intercept 0.157 0.108 0.146

Table 8: Poisson Model, size measures only

We also need to look at the goodness of fit of the model. Although there are many ways to look at it, a simple and intuitive
way is to consider the magnitude of relative error (MRE) based on the comparisons between the model’s expected class effort
values and the actual class effort values. Table 9 provides us with the distributions of MRE values in the dataset, for this

7 All multivariate models presented in this paper where also fitted using negative-binomial regression. In no case did we observe an overdispersion parameter
significantly different from zero (at p=0.05), justifying the use of Poisson regression.

8 The conditional number is defined as C= minmax / λλ , where maxλ and minλ are the maximum and minimum eigenvalues of the correlation matrix
of the measures in the model. Experiments showed that values of C above 30 indicate high presence of multicollinearity for which remedial action should be
taken. The experiments, and the theory underlying the conditional number are described in [1]. High multicollinearity does not affect the goodness of fit but
it is expected to impact the predictive accuracy of the model as it results in coefficients with higher standard errors.

ISERN 99-16 14

model, and, to ease comparisons, all subsequent models built in the following subsections will follow the same format. We
indicate the mean, standard deviation, 25th percentile (row P25), median, and 75th percentile (P75) for Poisson and hybrid
models based on various subsets of the measures investigated here (indicated by the columns). In order to be complete, Table
10 shows the same for the AREs. This is not discussed in the remainder of the paper as the conclusions would be similar to
the ones drawn based on MREs.

 Size Only Size & Coupling All measures
 Poisson Hybrid Poisson Hybrid Poisson Hybrid
Mean 1.706 0.724 1.504 0.724 0.965 0.744
StdDev 3.155 1.405 2.627 1.405 1.571 1.582
P25 1.660 0.559 1.261 0.559 0.729 0.642
Median 0.702 0.194 0.586 0.194 0.447 0.317
P75 0.185 0.074 0.226 0.074 0.291 0.093

Table 9: Goodness of fit: Distribution of class level MREs for all models

 Size Only Size & Coupling All measures
 Poisson Hybrid Poisson Hybrid Poisson Hybrid
Mean 1.892 1.386 1.517 1.151 1.223 1.098
StdDev 3.296 2.498 2.724 2.159 1.959 1.989
P25 1.856 1.573 1.069 1.307 0.900 1.319
Median 0.521 0.329 0.631 0.286 0.452 0.495
P75 0.383 0.073 0.429 0.076 0.325 0.117

Table 10: Goodness of fit: Distribution of class level AREs for all models

The MRE of the system predicted effort (i.e., sum of predicted class efforts) is not an interesting piece of information as we
are dealing with the goodness of fit of an unbiased model – it is therefore certain to be exact. We will look at the system pre-
diction accuracy when performing cross validation in Section 5.6.

5.5.2 Hybrid Model Based on Size Measures
As a first intermediate step to build our hybrid model, we have to build a regression tree. This tree consists of seven terminal
nodes. Each derived rule characterizes a terminal node (STNi) of the tree and is associated with a sample from which the me-
dian and mean can be estimated. Each observation in the dataset belongs to exactly one terminal node. We provide rules be-
low (alternatively a tree could have been displayed) and their corresponding median effort value.

STN1: NMIMP=5.5 AND NMINH=20 => Median Effort = 0.5
STN2: NMIMP=5.5 AND NMINH>20 => Median Effort = 0.2
STN3: NMIMP>5.5 AND NMIMP=9.5 AND NA=6 AND NM=24.5 => Median Effort = 1.3
STN4: NMIMP>5.5 AND NMIMP=9.5 AND NA=6 AND NM>24.5 => Median Effort = 1.0
STN5: NMIMP>5.5 AND NMIMP=9.5 AND NA>6.000000 => Median Effort = 1.7
STN6: NMIMP>9.5 AND NMIMP=20.5 => Median Effort = 5
STN7: NMIMP>20.5 => Median Effort = 20

Each terminal node was then transformed into additional binary variables in the dataset. In this particular case, they are also
denoted STN1, … , STN7 (after size terminal node), indicating for each observation if it belongs to the respective terminal
node, or not.
Again, as stepwise Poisson regression was run, this time allowing the size measures and the dummy variables to enter the
model. From the results of Poisson regression in Table 11, we can see that three of the terminal node dummy variables got
selected as significant covariates: STN1, STN2, STN7 (whose respective rules are given above). In addition, we still have the
four size measures selected in the previous model. Multicollinearity was tested and does not present a problem in this model
(Conditional number: 8.5).

Measure Coef. Std.Err. P>|z|
NA 0.030 0.007 0.000
NAIMP 0.115 0.013 0.000
NMIMP -0.084 0.011 0.000
NUMPAR 0.089 0.011 0.000
STN1 -0.979 0.284 0.001

ISERN 99-16 15

STN2 -2.173 0.624 0.000
STN7 1.480 0.177 0.000
Intercept 0.623 0.124 0.000

Table 11: Hybrid Model with size measures

The goodness of fit of the model has improved significantly over the Poisson regression model (Table 9). The median and
mean MRE went from 0.70 and 1.7 to 0.19 and 0.73, respectively. A paired t-test for comparing the mean MREs across the
two models shows a significant difference (t=3.64, p=0.0004). This is a major improvement and we have here supporting
evidence that the way we combine Poisson regression and regression trees can help to improve model building from a predic-
tive point of view. This will be confirmed in Section 5.6, when we will investigate cross validation results.

5.5.3 Poisson Model Based on Size and Coupling
In this model we use both size and coupling measures to build a multivariate cost model. One important question is whether
coupling information, which can be measured at a later stage of OO design, can help improve effort predictions. As a first
step, we look here at the improvement in goodness of fit, as shown by MRE.
Except for NAIMP, no size measures have been selected in the model shown in Table 12. This reflects that some coupling
measures have a strong correlation to size (see Section 5.3) and are included in the model partly for this reason. However,
since coupling measures are selected, and not the size measures, additional information in the coupling measures makes them
better covariates. The conditional number is 10.2. The model’s fit (see Table 9) is slightly better than the size only model:
median/MRE increased from 0.70/1.70 to 0.59/1.50. Though this difference is small, a t-test indicates it is significant:
t=2.379, p=0.0192. This therefore suggests that coupling information contributes–but not substantially more than size–to ex-
plaining class development effort.

Measure Coef. Std.Err p-value
OCMIC 0.069 0.008 0.000
MPC 0.013 0.004 0.001
ICP -0.001 0.001 0.014
NAIMP 0.146 0.015 0.000
ACMIC 0.204 0.058 0.000
IHICP 0.005 0.001 0.001
DMMEC -0.004 0.002 0.034
Intercept 0.092 0.094 0.331

Table 12: Poisson model with size, coupling

5.5.4 Hybrid Model based on Size and Coupling Measures
Like for the size only model, we then attempt to build a hybrid model (regression tree + Poisson regression) using both size
and coupling measures.. The rules of the terminal nodes (SCTNi) are as follows:

SCTN1: NMIMP=5.5 AND NMINH=20 => Median Effort = 0.5
SCTN2: NMIMP=5.5 AND NMINH>20 => Median Effort = 0.2
SCTN3: NMIMP>5.5 AND NMIMP=9.5 AND PIM_EC=46.5 => Median Effort = 1.7
SCTN4: NMIMP>5.5 AND NMIMP=9.5 AND PIM_EC>46.5 AND IH-ICP=1.5 => Median Effort = 1.3
SCTN5: NMIMP>5.5 AND NMIMP=9.5 AND PIM_EC>46.5 AND IH-ICP>1.5 => Median Effort = 1.0
SCTN6: NMIMP>9.5 AND NMIMP=20.5 => Median Effort = 5
SCTN7: NMIMP>20.5 => Median Effort = 20

The regression tree we obtain differs only slightly from the Size-only tree, another indicator of the limited impact of coupling
on effort in addition to size. In particular, SCTN1,2,6 and 7 use the same rules.
Like for the size only model, the combined use of regression trees and Poisson regression substantially improves the good-
ness of fit of the model (see Table 9, the mean and median MREs go from 0.58/1.5 to 0.22/0.69 ; t-test: t=3.250, p=0.0016).
However, the goodness of fit is not very different from the hybrid model with only size measures (the mean and median
MREs were 0.72 and 0.19 for the Hybrid size model; t-test: t=0.263, p=0.7931). Using coupling measures in addition to size
does not help to increase the predictive power of the hybrid model. The conditional number for this model is 6.3.

Measure Coef. Std.Err. P>|z|
MPC 0.016 0.003 0.000
OCMIC 0.033 0.009 0.000

ISERN 99-16 16

ICP -0.001 0.000 0.000
NAIMP 0.082 0.016 0.000
SCTN2 -2.676 0.631 0.000
SCTN1 -1.727 0.299 0.000
SCTN5 -1.472 0.284 0.000
ACMIC 0.343 0.067 0.000
SCTN4 -0.791 0.280 0.005
NA -0.031 0.011 0.006
Intercept 1.260 0.173 0.000

Table 13: Hybrid model, size and coupling

5.5.5 Poisson Model Based on All Measures
We now use all design measures available to us, including cohesion and complexity measures, which are available during the
late stages of the design. From Table 14 we can see that two coupling measures are selected and both normalized and non-
normalized cohesion measures [6]. A size measure is still in the model: NUMPAR. The conditional number is 10.6.

Measure Coef. Std.Err. P>|z|
OCMIC 0.028 0.013 0.031
LCOM2 -0.002 0.001 0.000
ICH -0.006 0.003 0.040
COH -1.731 0.432 0.000
ACMIC 0.243 0.063 0.000
LCC 2.414 0.244 0.000
LCOM3 0.077 0.013 0.000
NUMPAR 0.058 0.010 0.000
Intercept -0.505 0.160 0.002

Table 14: Poisson model with all measures

The goodness of fit (Table 9) of the model is clearly better than the Poisson regression using size and coupling measures
only: The mean/median MREs go from 1.50/0.48 to 0.96/0.44. A paired t-test testing the differences in mean MREs yields
t=3.998 and p<0.0001. Although many of these measures show some correlation to size, they bring more information that
helps explain additional class effort variation.

5.5.6 Hybrid Model Based on All Measures
Again, we built a regression tree from all measures, resulting in eight terminal nodes (denoted by TN1, … , TN8). The rules
for the TNs are:

TN1: LCOM2=53 AND NMIMP=5.5 AND NMINH=20 AND PIM_EC=47.5 ⇒ Median effort = 0.6
TN2: LCOM2=53 AND NMIMP=5.5 AND NMINH=20 AND PIM_EC>47.5 ⇒ Median effort = 0.5
TN3: LCOM2=53 AND NMIMP=5.5 AND NMINH>20 ⇒ Median effort = 0.2
TN4: LCOM2=53 AND NMIMP=9.5 AND NMIMP>5.5 AND LCOM4=5.5 ⇒ Median effort = 1.7
TN5: LCOM2=53 AND NMIMP=9.5 AND NMIMP>5.5 AND LCOM4>5.5 AND SIX=0.339 ⇒ Median effort = 0.8
TN6: LCOM2=53 AND NMIMP=9.5 AND NMIMP>5.5 AND LCOM4>5.5 AND SIX>0.339 ⇒ Median effort = 1.0
TN7: LCOM2=53 AND NMIMP>9.5 ⇒ Median effort = 4.8
TN8: LCOM2>53 ⇒ Median effort = 14.6

When using all design measures, the hybrid use of Poisson regression and regression trees only slightly improve the
mean/median MRE (for MRE, t=1.892, p=0.0613 not significant at the 5% level). In addition, there is no improvement over
the hybrid model using size and coupling information (t=-0.34, p=0.7347). The conditional number is 13.0.

Measure Coef. Std. p
NUMPAR 0.038 0.012 0.001
NMIMP 0.050 0.021 0.017
ACMIC 0.206 0.048 0.000
LCC 0.763 0.173 0.000
TN8 0.774 0.159 0.000
TN3 -1.512 0.631 0.017

ISERN 99-16 17

LCOM1 -0.002 0.000 0.000
TN2 -0.812 0.418 0.052
Intercept -0.157 0.167 0.348

Table 15: Hybrid model with all measures

From the goodness of fit results discussed above, we clearly see that class size seems to be the main driver in explaining cost.
Although other attributes such as coupling or cohesion play a role, their impact on cost is limited. If such results would be
confirmed by further studies, that would mean that simple counts in class diagrams could lead to accurate cost estimates dur-
ing analysis and high-level design. Of course, a number of questions remain to be investigated. For example, although seven
developers were involved in the system development under study, the variations due to human factors might be more impor-
tant across systems, even within an application domain, thus leading to less accurate models.
Another important result is that the way we combine Poisson regression and regression trees seems to be very effective at
improving the goodness of fit of some of our models.
Now, in order to get a more realistic assessment of our models’ accuracy we will perform their cross validation.

5.6 10-Cross validation
We perform here a 10-cross validation for each model. We randomly partition the dataset into 10 subsets. For each of them,
we refit each model on the remainder of the dataset and assess the model by applying it to the held-out subset. We thus obtain
new effort predictions for each observation in the dataset, compute new MRE/ARE values for each model, and compare them
using a two-tailed paired t-test.
The distribution of class MREs and AREs are summarized in Table 16 and Table 17, which are structured in the same way as
Table 9.

 Size only Size&Coupling All measures
 Pois. Hyb. Pois. Hyb. Pois, Hyb.
Mean 1.712 0.779 1.545 0.770 1.013 0.851
P25 0.223 0.085 0.275 0.130 0.298 0.125
Med. 0.723 0.258 0.743 0.250 0.504 0.347
P75 1.295 0.571 1.286 0.464 0.759 0.708

Table 16: Distribution of class level MREs using 10-cross validation

 Size only Size&Coupling All measures
 Pois. Hyb. Pois. Hyb. Pois, Hyb.
Mean 2.286 1.805 2.209 1.501 2.108 1.804
P25 0.368 0.059 0.483 0.087 0.328 0.122
Med 0.622 0.349 0.633 0.346 0.465 0.496
P75 1.697 1.679 1.093 1.374 1.306 1.450

Table 17: Distribution of class level AREs using 10-cross validation

The models we built in Section 5.5 seem to be stable, as the MRE values did not increase significantly with the cross valida-
tion procedure. When we perform t-tests to compare the class level MREs from model fit and cross validation, no p-value is
significant at α=0.05.
Impact of design measures
• For the three Poisson models, the “all measures” model has significantly lower MREs than the two other models. The

difference between “size only” and “size&coupling” is not significant.
• For the three hybrid models, there is no significant difference in MRE between any of the models.
• Cross-validation therefore confirms that, when using a hybrid model that captures best the structure of the data, coupling

measures do not improve MRE.

Use of Hybrid Models
The transition from Poisson regression to a hybrid model brings a significant improvement for the size-only, and the size-
and-coupling models, but not for the model using all measures. From a general perspective, it seems that such hybrid models
should be systematically tried out as they are easy to implement and can potentially bring significant improvements.
Looking at the System Effort MRE/ARE using Bootstrapping
Since we can, based on our predictions, compute only one system effort MRE/ARE value per model, we cannot perform a
straight statistical comparison of the system effort prediction accuracy across models. However, this is one of the main goals
of our study. In order to perform such statistical inferences, we are going to use bootstrapping as specified in Section 3.4.

ISERN 99-16 18

1000 resamples were generated from the original dataset. For each resample, the system effort and corresponding
MREs/AREs were calculated. The distribution of the system-level MREs/AREs thus obtained are given in Table 18 and
Table 19 (structured in the same way as Table 9). We additionally indicate the 2.5th and 97.5th percentiles, which define the
boundaries of the 95% confidence intervals.

 Size Only Size & Coupling All measures
 Poisson Hybrid Poisson Hybrid Poisson Hybrid
Mean 0.101 0.081 0.119 0.073 0.127 0.098
StdDev 0.082 0.061 0.092 0.056 0.090 0.079
P25 0.040 0.032 0.048 0.028 0.054 0.038
Median 0.083 0.069 0.103 0.060 0.112 0.083
P75 0.143 0.113 0.166 0.107 0.185 0.135
P2.5 0.004 0.003 0.005 0.002 0.005 0.004
P97.5 0.323 0.228 0.341 0.210 0.329 0.298

Table 18: Distribution of system level MREs using Bootstrapping

 Size Only Size & Coupling All measures
 Poisson Hybrid Poisson Hybrid Poisson Hybrid

Mean 38.594 32.104 46.194 29.016 50.432 37.870
StdDev 29.582 25.384 34.377 23.161 39.401 29.331

P25 15.187 12.332 18.468 10.681 20.057 15.091
Median 31.706 26.960 41.130 23.550 42.908 31.560

P75 54.655 44.820 64.184 41.398 70.629 53.594
P2.5 1.604 1.150 1.846 0.826 2.125 1.465

P97.5 107.345 95.848 135.495 84.724 142.270 106.167
Table 19: Distribution of system level AREs using Bootstrapping

The median MREs range between 5% and 11%, and the 95% confidence intervals upper bounds are below 35%. This result
shows that system effort predictions, in most cases, are expected to be relatively accurate by usual software engineering cost
estimation standards. The system-level mean MREs from bootstrapping in Table 18 are one order of magnitude lower than
the class-level mean MREs resulting from the 10-cross validation in Table 16. This indicates that the over- and underpredic-
tion of effort for individual classes cancel each other out when taking the sum of predicted effort over all classes, leading to
more accurate estimates for the system effort. This is only possible because, as discussed above, our models are unbiased.
From a practical standpoint, this means that our effort models are more suitable for the purpose of system effort prediction
but would be more difficult to use, for example, to assign classes and effort to developers.
An important application of such system effort Bootstrap distributions is risk analysis. In the area of cost prediction, we do
need more than just point estimates of effort. We require predicted effort distributions to select budgets associated with ac-
ceptable levels of risks. For example, if one wishes (and is in a position) to select a budget that minimizes the risk of budget
overrun, one can use the 95% upper MRE bound (e.g., 35%) and increase the predicted system effort using our models by
adding a percentage corresponding to this MRE value (e.g., 35% overhead). Many such uses of the uncertainty associated
with the system effort prediction can be devised.
As expected, the median and mean MREs are also significantly smaller for hybrid models according to unpaired t-tests com-
paring Bootstrap distributions. Another important result is that, in each case, transitions to hybrid models decrease the bounds
of the confidence intervals, especially the upper bounds, where there is more room for improvement, thus reducing the risk
associated with a prediction.
On the other hand, the use of coupling, cohesion, or complexity measures (late design measures) does not play a significant
role in improving system effort predictions. The lack of effect at the system level is evident from the Bootstrapping results.
Confidence intervals boundaries, means, and medians do not decrease. MRE values even seem to grow, but these effects are
very small and not significant.

6 CONCLUSIONS
From the results presented in this study, we may conclude that there is a reasonable chance that useful cost estimation models
could be built during the analysis and design of object-oriented systems. The best model shows system effort prediction
MREs that lie, in 95% of the cases, within a 3%-23% interval, when using cross validation and Bootstrapping to obtain
realistic results. This result is obtained because, in part, we used a regression technique that yielded unbiased predictions:
Poisson regression. OLS with transformed variables has shown to be severely biased and yielded severely underestimated

ISERN 99-16 19

son regression. OLS with transformed variables has shown to be severely biased and yielded severely underestimated system
effort predictions.
These results must be seen as a maximum bound rather than a realistic figure for cross project predictions, since the data
comes from one system. Although seven developers were involved, if models had been built using data from several systems,
additional human and process factors would have likely introduce more variation in the trends we have observed here. But
this remains to be investigated.
Another important result is that simple size measures, which can be obtained from class diagrams, explain most of the effort
variance. More sophisticated coupling measures do not add substantial gains in terms of goodness of fit and therefore in
terms of cost estimation accuracy. The investigated cohesion and complexity measures do not help at all.
Last but not least, the combination of Poisson regression and regression trees has helped to improve significantly predictions,
especially early predictions based on size measures only. This can be explained by the fact that they tend to capture comple-
mentary structures in the data. Although different attempts have been made in the past to combine trees and regression analy-
sis [3], they were not successful for reasons beyond the scope of this paper.
An important problem remains to be addressed. Recall that our effort predictions do not include system and acceptance test
effort, as this cannot be considered when building models at the class granularity level. Then how to perform complete effort
predictions? Building models at the system or subsystem level may, on the other hand, be an unrealistic objective as collect-
ing the required number of project data points may take a prohibitive time. An alternative is for organizations to design
common data repositories to speed up the data collection process [3]. Another possibility, that should be investigated, is to
devise an overhead model that systematically adds some system and acceptance test effort overhead to the predicted effort of
our models.

ACKNOWLEDGEMENTS
We thank Paolo Nesi and his colleagues at the University of Florence for providing us with the LIOO system and effort data,
and Audris Mockus for his advice on statistical matters. The Concerto2/AUDIT tools and the FAST technology were develop
by SEMA Group, France, and are now marketed by Verilog. We want to thank SEMA group for providing us with this tool
suite.

REFERENCES
All referenced ISERN reports are available at http://www.iese.fhg.de/ISERN.
[1] D. Belsley, E. Kuh, R. Welsch, Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley & Sons,

1980.
[2] J.M. Bieman, B.-K. Kang, “Cohesion and Reuse in an Object-Oriented System”, in Proc. ACM Symp. Software Reusability (SSR'94),

259-262, 1995.
[3] L. Briand, K. El Emam, K. Maxwell, D. Surmann, I. Wieczorek, “An Assessment and Comparison of Common Software Cost Esti-

mation Models”. In: Proceedings of the 21st International Conference on Software Engineering, ICSE 99, (Los Angeles, USA 1999)
313-322.

[4] L. Briand, J. Daly, V. Porter, J. Wüst, “A Comprehensive Empirical Validation of Product Measures for Object-Oriented Systems”,
Journal of Systems and Software, to appear. Technical Report ISERN-98-07, 1998.

[5] L. Briand, J. Daly, J. Wüst, “A Unified Framework for Coupling Measurement in Object-Oriented Systems”, IEEE Transactions on
Software Engineering 25 (1), 91-122, 1999.

[6] L. Briand, J. Daly, J. Wüst, “A Unified Framework for Cohesion Measurement in Object-Oriented Systems”, Empirical Software
Engineering Journal, 3 (1), 65-117, 1998.

[7] L. Briand, P. Devanbu, W. Melo, “An Investigation into Coupling Measures for C++”, Proceedings of ICSE ‘97, Boston, USA, 1997.
[8] L. Briand, J. Wüst, H. Lounis, S. Ikonomovski, “Investigating Quality Factors in Object-Orienbted Designs: an Indusrial Case Study”,

Proceedings of the 21st International Conference on Software Engineering, ICSE 99, (Los Angeles, USA 1999) 345-354.
[9] L. Briand, S. Morasca, V. Basili, “Property-Based Software Engineering Measurement”, IEEE Transactions of Software Engineering,

22 (1), 68-86, 1996.
[10] Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J. Classification and Regression Trees. Wadsworth & Books/Cole Advanced

Books & Software (1984).
[11] LIOO Homepage (in Italian): http://aguirre.ing.unifi.it/~lioo
[12] S.R. Chidamber, C.F. Kemerer, “Towards a Metrics Suite for Object Oriented design”, in A. Paepcke, (ed.) Proc. Conference on Ob-

ject-Oriented Programming: Systems, Languages and Applications (OOPSLA'91), October 1991. Published in SIGPLAN Notices, 26
(11), 197-211, 1991.

[13] S.R. Chidamber, C.F. Kemerer, “A Metrics Suite for Object Oriented Design”, IEEE Transactions on Software Engineering, 20 (6),
476-493, 1994.

[14] S. Chidamber, D. Darcy, C. Kemerer, “Managerial use of Metrics for Object-Oriented Software: An Exploratory Analysis”, IEEE
Transactions on Software Engineering, 24 (8), 629-639, 1998.

[15] G. Dunteman, “Principal Component Analysis”, SAGE Publications, 1989.
[16] Hayes W. Statistics. Fifth Edition, Hartcourt Brace College Publishers (1994).

ISERN 99-16 20

[17] B. Henderson-Sellers, “Software Metrics”, Prentice Hall, Hemel Hempstaed, U.K., 1996.
[18] M. Hitz, B. Montazeri, “Measuring Coupling and Cohesion in Object-Oriented Systems”, in Proc. Int. Symposium on Applied Corpo-

rate Computing, Monterrey, Mexico, October 1995.
[19] A. Lake, C. Cook, “Use of factor analysis to develop OOP software complexity metrics”, Proc. 6th Annual Oregon Workshop on

Software Metrics, Silver Falls, Oregon, 1994.
[20] Y.-S. Lee, B.-S. Liang, S.-F. Wu, F.-J. Wang, “Measuring the Coupling and Cohesion of an Object-Oriented Program Based on In-

formation Flow”, in Proc. International Conference on Software Quality, Maribor, Slovenia, 1995.
[21] W. Li, S. Henry, “Object-Oriented Metrics that Predict Maintainability”, J. Systems and Software, 23 (2), 111-122, 1993.
[22] S. Long, “Regression Models for Categorical and Limited Dependent Variables”, Advanced Quantitative Techniques, Sage publica-

tions, 1997.
[23] M. Lorenz, J. Kidd, “Object-Oriented Software Metrics”, Prentice Hall Object-Oriented Series, Englewood Cliffs, N.J., 1994.
[24] P. McCullagh and J. Nelder, “Generalized Linear Models”, London: Chapman & Hall, 1989
[25] T. Graves, A. Mockus, Identifying Productivity Drivers by Modeling Work Units Using Partial Data, Bell Laboratories Technical

Report BL0113590-990513-09TM, 2000
[26] C. Mooney, R. Duval, “Bootstrapping. A Nonparametric Approach to Statistical Inference”, Quantitative Applications in the Social

Sciences, 95, Sage Publications, 1993.
[27] P. Nesi, “Managing OO Projects Better”, IEEE Software, July/August 1998, p. 50-60.
[28] P. Nesi, T. Querci, “Effort estimation and prediction of object-oriented systems”, Journal of Systems and Software 42, p. 89-102,

1998.
[29] D. Steinberg, N. Cardell, “The Hybrid CART-Logit Model in Classification and Data Mining”, Salford Systems, 1999

http://www.salford-systems.com
[30] M. Stone, “Cross-validatory choice and assessment of statistical predictions”, J. Royal Stat. Soc., Ser. B 36, 111-147.
[31] D.P. Tegarden, S.D. Sheetz, D.E. Monarchi, “A Software Complexity Model of Object-Oriented Systems”, Decision Support Sys-

tems, 13(3-4), 241-262, 1995.

APPENDIX: DEFINITION OF DESIGN MEASURES
The measures of coupling, cohesion, and inheritance identified in a literature survey on object-oriented design measures
[5][6], as well as two new variation of coupling measures, are the independent variables used in this study. We focus on de-
sign measurement since we want the measurement-based models investigated in this paper to be usable at early stages of
software development. Furthermore, we only use measures defined at the class level since this is also the granularity at which
the effort data could realistically be collected.
The following tables describe the measures used in this study. We list the acronym used for each measure, informal defini-
tions of the measures, and literature references where the measures originally have been proposed. The informal natural lan-
guage definitions of the measures should give the reader a quick insight into the measures. However, such definitions tend to
be ambiguous. Formal definitions of the measures using a uniform and unambiguous formalism are provided in [5][6].
In this paper, measures are classified as coupling, cohesion, or inheritance measures based on what their authors labeled them
to be. There are a number of approaches to define these attributes in an objective manner, a recent and practical proposal is
[9], which defines for each attribute a set of mathematical properties that a measures of the attribute should possess. As is
shown in [5][6], not all coupling and cohesion measures investigated here fulfill these properties. All size measures used here
fulfill the size properties postulated in [9].
More importantly from a practical point of view, the measures are roughly distinguished by the information required to com-
pute them. Size measures rely on information available from the class interface only, coupling measures additionally require
information about method calls and internal class attributes, cohesion and complexity measures additionally require informa-
tion about attribute usage and within-class method invocations. Hence the progressive stages at which these measures be-
come available: size and inheritance measures first, then coupling, then cohesion and complexity.
In order to make possible the use of these measures at the design stage, we adapted some of the measures involving counts of
method invocations as follows. Measures that are based on counts of multiple invocations of pairs of methods (say methods
m’ and m) were changed to solely sensitive to the fact a given method invokes another one at least once. The rationale for this
decision is that the precise number of times a given method m’ invokes m is an information which is available only after im-
plementation is completed, whereas the information that m’ invokes m is usually available earlier during the design phase.
The measures affected by this simplification are MPC, the ICP measures, the method-method interaction measures by Briand
et al [7], and ICH.

ISERN 99-16 21

Name Definition Src.
LCOM1 Lack of cohesion in methods. The number of pairs of methods in the class using no attribute in common. [12]
LCOM2 LCOM2 is the number of pairs of methods in the class using no attributes in common, minus the number

of pairs of methods that do. If this difference is negative, however, LCOM2 is set to zero.
[13]

LCOM3 Consider an undirected graph G, where the vertices are the methods of a class, and there is an edge be-
tween two vertices if the corresponding methods use at least an attribute in common. LCOM3 is defined
as the number of connected components of G.

[18]

LCOM4 Like LCOM3, where graph G additionally has an edge between vertices representing methods m and n, if
m invokes n or vice versa.

[18]

Co Connectivity. Let V be the number of vertices of graph G from measure LCOM4, and E the number of its
edges. Then))2)(1/(())1((2 −−−−= VVVECo .

[18]

LCOM5 Consider a set of methods {Mi} (i=1,...,m) accessing a set of attributes {Aj} (j=1,...,a). Let µ(Aj) be the

number of methods which reference attribute Aj. Then)1/()))(((15
1

mmA
a

LCOM
a

j j −−= ∑ =
µ .

[17]

Coh
A variation on LCOM5:)/())((

1
amACoh

a

j j ⋅= ∑ =
µ

[6]

TCC Tight class cohesion. Besides methods using attributes directly (by referencing them), this measure con-
siders attributes indirectly used by a method. Method m uses attribute a indirectly, if m directly or indi-
rectly invokes a method which directly uses attribute a. Two methods are called connected, if they directly
or indirectly use common attributes. TCC is defined as the percentage of pairs of public methods of the
class which are connected, i.e., pairs of methods which directly or indirectly use common attributes.

[2]

LCC Loose class cohesion. Same as TCC, except that this measure also considers pairs of indirectly connected
methods. If there are methods m1,..., mn, such that mi and mi+1 are connected for i=1,...,n-1, then m1 and
mn are indirectly connected. Measure LCC is the percentage of pairs of public methods of the class which
are directly or indirectly connected.

[2]

ICH Information-flow-based cohesion. ICH for a method is defined as the number of invocations of other
methods of the same class, weighted by the number of parameters of the invoked method (cf. coupling
measure ICP above). The ICH of a class is the sum of the ICH values of its methods.

[20]

Table 20: Cohesion Measures

ISERN 99-16 22

Name Definition Source
CBO Coupling between object classes. According to the definition of this measure, a class is coupled to an-

other, if methods of one class use methods or attributes of the other, or vice versa. CBO is then defined
as the number of other classes to which a class is coupled. This includes inheritance-based coupling
(coupling between classes related via inheritance).

[13]

CBO’ Same as CBO, except that inheritance-based coupling is not counted. [12]
RFC8 Response set for class. The response set of a class consists of the set M of methods of the class, and the

set of methods directly or indirectly invoked by methods in M. In other words, the response set is the set
of methods that can potentially be executed in response to a message received by an object of that class.
RFC is the number of methods in the response set of the class.

[12]

RFC1 Same as RFC8 , except that methods indirectly invoked by methods in M are not included in the response
set.

[13]

MPC Message passing coupling. The number of method invocations in a class. [19]
DAC Data abstraction coupling. The number of attributes in a class that have another class as their type. [19]
DAC’ The number of different classes that are used as types of attributes in a class. [19]
ICP Information-flow-based coupling. The number of method invocations in a class, weighted by the number

of parameters of the invoked methods. Takes polymorphism and dynamic binding into account.
[20]

IH-ICP As ICP, but counts invocations of methods of ancestors of classes (i.e., inheritance-based coupling) only. [20]
NIH-ICP As ICP, but counts invocations to classes not related through inheritance. [20]
PIM Polymorphically invoked methods. The number of invocations of methods of a class c by other classes

(regardless of the relationship between classes). Also takes polymorphism and dynamic binding into
account. Same as ICP, except that no weighting by the number of parameters is performed.

PIM_EC Export coupling version of PIM. The number of invocations of methods of a class c by other classes
(regardless of the relationship between classes). Also takes polymorphism and dynamic binding into
account.

IFCAIC
ACAIC
OCAIC
FCAEC
DCAEC
OCAEC
IFCMIC
ACMIC
OCMIC
FCMEC
DCMEC
OCMEC
IFMMIC
AMMIC
OMMIC
FMMEC
DMMEC
OMMEC

These coupling measures are counts of interactions between classes. The measures distinguish the rela-
tionship between classes (friendship, inheritance, none), different types of interactions, and the locus of
impact of the interaction.
The acronyms for the measures indicates what interactions are counted:
• The first or first two letters indicate the relationship (A: coupling to ancestor classes, D: Descen-

dents, F: Friend classes, IF: Inverse Friends (classes that declare a given class c as their friend), O:
Others, i.e., none of the other relationships).

• The next two letters indicate the type of interaction:
• CA: There is a Class-Attribute interaction between classes c and d, if c has an attribute of type d.
• CM: There is a Class-Method interaction between classes c and d, if class c has a method with a

parameter of type class d.
• MM: There is a Method-Method interaction between classes c and d, if c invokes a method of d, or

if a method of class d is passed as parameter (function pointer) to a method of class c.
• The last two letters indicate the locus of impact:
• IC: Import coupling, the measure counts for a class c all interactions where c is using another class.
• EC: Export coupling: count interactions where class d is the used class.

[7]

Table 21: Coupling Measures

ISERN 99-16 23

Name Definition Src
DIT Depth of inheritance tree The DIT of a class is the length of the longest path from the class to the root in

the inheritance hierarchy.
[12]

AID Average inheritance depth of a class. AID of a class without any ancestors is zero. For all other classes,
AID of a class is the average AID of its parent classes, increased by one.

[17]

CLD Class-to-leaf depth. CLD of a class is the maximum number of levels in the hierarchy that are below the
class.

[31]

NOC
NOP
NOD
NOA

The number of children, parent, descendent, or ancestor classes of a class. [12],
[19],
[22],
[31]

NMO Number of methods overridden The number of methods in a class that override a method inherited from
an ancestor class.

[22]

NMA Number of methods added. The number of new methods in a class, not inherited, not overriding. [22]
SIX Specialization Index. SIX is defined as

NMO * DIT / (NMO+NMA+NMINH)
[22]

Table 22: Inheritance Measures

Name Definition
NMIMP The number of methods implemented in a class (non-inherited or overriding methods)
NMINH The number of inherited methods in a class, not overridden
NM The number of methods in a class (both inherited and non-inherited)
NAIMP The number of attributes in a class (excluding inherited ones). Includes attributes of basic types such as

strings, integers.
NA The number of attributes in a class (both inherited and non-inherited)
NUMPAR (Number of parameters)The sum of the number of parameters of the methods implemented in a class.

Table 23: Size Measures

