
 1

Assessing the Applicability of Fault-Proneness Models
Across Object-Oriented Software Projects

Lionel C. Briand

Carleton University
Systems and Computer Engineering

1125 Colonel By Drive
Ottawa, ON, K1S 5B6, Canada

briand@sce.carleton.ca

Walcelio L. Melo
Oracle Brazil and

Univ. Católica de Brasilia
SQN Qd. 02- Bl A-Salas 604

Brasilia, DF Brazil 70712-900
wmelo@acm.org

Jürgen Wüst
Fraunhofer Institute for

Experimental Software Engineering
Sauerwiesen 6

67661 Kaiserslautern, Germany
wuest@iese.fhg.de

ISERN Report No. ISERN-00-06,
Version 2

ABSTRACT
A number of papers have investigated the relationships between design metrics and the detection of faults in object-oriented
software. Several of these studies have shown that such models can be accurate in predicting faulty classes within one par-
ticular software product. In practice, however, prediction models are built on certain products to be used on subsequent soft-
ware development projects. How accurate can these models be considering the inevitable differences that may exist across
projects and systems? Organizations typically learn and change. From a more general standpoint, can we obtain any evidence
that such models are economically viable tools to focus validation and verification effort? This paper attempts to answer
these questions by devising a general but tailorable cost benefit-model and by using fault and design data collected on two
mid-size Java systems developed in the same environment. Another contribution of the paper is the use of a novel exploratory
analysis technique (MARS) to build such fault-proneness models, whose functional form is a priori unknown.
Results indicate that a model built on one system can be accurately used to rank classes within another system according to
their fault-proneness. The downside, however, is that, because of system differences, the predicted fault probabilities are not
representative of the system predicted. However, our cost-benefit model demonstrates that the MARS fault-proneness model
is potentially viable, from an economical standpoint. The linear model is not nearly as good, thus suggesting a more complex
model is required.

1 INTRODUCTION
Measures of structural design properties such as coupling or complexity are widely considered to be indicators of external
system quality attributes, such as reliability or maintainability. Many measures taking structural properties of object-oriented
systems into account were proposed in the literature [2][9][7]. A number of case studies have provided empirical evidence
that by using regression analysis techniques, highly accurate prediction models for class fault-proneness can be built from
existing OO design measures [5][6]. The accuracy of the prediction models in these studies is usually quantified by some
measure of goodness of fit of the model predictions to the actual fault data, or using within-system cross-validation tech-
niques, such as V-cross-validation [14].
The purpose of building such models is to apply them to other systems (e.g., different systems developed in the same devel-
opment environment), in order to focus verification and validation efforts on fault-prone parts of those systems. But little is
known about the accuracy of prediction models when they are actually applied under realistic conditions. In that sense, the
existing studies can mostly be characterized as feasibility studies.
In this paper, we build a fault-proneness prediction model based on a set of OO measures using data collected from a mid-
sized Java system, and then apply the model to a different Java system developed by the same team. We then evaluate the
accuracy the model’s prediction in that system and the model’s economic viability using a cost-benefit model.
A second objective is to use a novel exploratory, regression-based technique called MARS (Multivariate Adaptive Regres-
sion Splines [12]). We investigate whether this technique can result in more accurate fault-proneness models than typical
logistic regression models assuming a linear relationship between covariates and the logit term.
Results indicate that a model built on one system can be used to accurately rank classes within another system according to
their fault-proneness. However, only the MARS model is accurate whereas the linear logistic regression model does not seem
appropriate. A cost-benefit model demonstrates such a fault-proneness model is potentially viable as it can provide clear
benefits. However, the probabilities of a model built on one system applied to another suggest that differences in system fac-
tors make these probabilities meaningless, though the class ranking is preserved. In other words, if this is confirmed, such
models’ probabilities would need to be calibrated for each system. The implications of such a limitations are discussed be-
low.

ISERN-00-06 – Version 2 2

The paper is structured as follows. Section 2 describes the setting of the study. Section 3 briefly lays down our analysis
methodology and introduces the modeling techniques, logistic regression, and MARS. Analysis results are detailed in Section
4, and we draw our conclusions in Section 5.

2 DESCRIPTION OF STUDY SETTING
This section describes the systems used for this study, the data collected, and the data collection procedures.

2.1 Systems
This subsection provides details about the two Java systems used in this study, Xpose and Jwriter, both developed at Oracle
Brazil. Jwriter was developed first and then Xpose started. But Xpose is the larger of the two systems in terms of fault data
and number classes, and as such more fit for us to build a prediction model. We will therefore use Xpose for the fit data set
from which we build our prediction models. Jwriter, the smaller system, will be used as test data set. We try to put ourselves
in a situation where one would have sufficient1 design and fault data from one or a few projects and would use such data to
build fault-proneness models to be used on new projects. Though, due to the characteristics of the data sets at hand, we had to
use the two projects in their reverse order of performance (Xpose and Jwriter are used to build and test the model, respec-
tively), we believe this has no effect on answering our research questions: the differences between projects are still there and
are going to affect the model’s accuracy. Our research design will simply have implications in the way we interpret the re-
sults.

2.1.1 Xpose
Xpose for Java is an application that allows its users to display and edit XML documents. With Xpose one can traverse an
XML document's hierarchy, explore the attributes of a particular node in that hierarchy, or view and edit the XML source
associated with it. The application offers a Document Browser, an XML rendering machine, and a property inspector and
contents editor to view and modify XML elements.
Xpose was implemented under Sun's JDK 1.2, using the Swing library classes for the GUI, and a prefabricated XML Parser
also developed at Oracle. Xpose consists of 144 Java classes, with a total of 1774 methods. Some of the 144 classes were
reused with modifications.

2.1.2 Jwriter
Jwriter is a component that provides basic word processing capabilities, i.e., text editing, formatting at the word, paragraph
and document level, definition of styles (groups of formatting elements), support for file formats (RTF, HTML), in-document
images, automated spell checking, and connectivity to Oracle Databases. Jwriter can be used standalone or integrated in other
applications that need to provide word processing capabilities.
Jwriter was developed under Sun JDK 1.1, using Swing and a set of prefabricated toolkits for RTF and HTML data ex-
change, and spell checking support. Jwriter consists of 68 Java classes, with a total of 933 methods.

2.2 Data Collection Procedures and Measurement Instruments
For both Xpose and Jwriter the following relevant items were collected:
• the source code of the systems.
• data about faults found in the field by customers
A static analyzer (Jmetrics[1], developed by Oracle Brazil) was developed to extract the values for the object-oriented design
measures directly from the source code of Xpose and Jwriter.
One issue that has usually to be dealt with when analyzing design measures and fault data is that systems are being measured
at a given version and keep evolving. We therefore have to decide what version we measure and what fault data we consider.
The way to address this issue is context dependent. When building fault-proneness models with Xpose fault data, we will use
all faults that have been detected after version 1.17. We collected our design measurements on that version and the class in-
terfaces, on which are based the design measures we used, have not changed significantly after that version. When we will
apply our fault-proneness model to Jwriter, we will apply it to version 0.5 (the first delivered version) and use the fault data
for that version. We therefore emulate the situation where we would build a model based on the fault history of a system and
then apply it to a new system that has just been developed.

2.3 Dependent Variable
We want to evaluate whether existing OO design measures are useful for predicting the probability that a fault is detected in a
class during field use. More precisely, the probability of fault detection that is meant here is a conditional probability: the

1 This is subjective and context dependent but, as a ballpark figure, our experience suggests that at least 100 observations (classes) are needed to account for
the complexity of such fault-proneness models. As discussed below, Jwriter only contains 68 classes.

ISERN-00-06 – Version 2 3

probability that at least one failure occurring in the field is traced back to a fault in a class, depending on the obtained meas-
urement values of the design measures for that class. This should be a good indicator of the class fault-proneness.

2.4 Independent Variables
The set of design measures investigated in this study includes a subset of the coupling measures described in [4] [6], a set of
measures related to polymorphism [2], a subset of the OO measurement suite of Chidamber and Kemerer [9], and some sim-
ple size measures based on counts of the methods and attributes. The Appendix contains a summary of the measures we used,
as collected by Jmetrics.
Some of the classes in Xpose and Jwriter contain Java inner classes. These inner classes were not treated as individual obser-
vations (data points) in this study. Instead, in the calculation of our design measures, methods and attributes of inner classes
were counted to contribute towards the containing class. Accordingly, faults traced back to an inner class were assigned to the
outmost containing class. Clearly, other strategies to deal with inner classes are possible, e.g., by treating them as individual
observations and adjusting the measures accordingly.
This choice entirely depends on how the results prediction models are intended to be used. If we want inner classes to be in-
spection objects that our prediction model can point to, we need to treat them as separate observations. Then, the fault data
has to be collected at this finer level of granularity.

3 DATA ANALYSIS METHODOLOGY
In this section we describe the methodology used to analyze the OO measurement data collected. The analysis procedure
comprises an analysis of the descriptive statistics, principal component analysis, univariate regression analysis against the
fault data. The reader is referred [5] to for a detailed description and justification of our analysis procedures.

3.1 Descriptive statistics
The distribution and variance of each measure is examined to select those with enough variance for further analysis. Low
variance measures do not differentiate classes very well and therefore will not be useful predictors in our data set. Further-
more, a comparison of the descriptive statistics between the two systems will help us better interpret the results of our analy-
sis below.

3.2 Principal component analysis
If a group of variables in a data set are strongly correlated, these variables are likely to measure the same underlying dimen-
sion (i.e., class property) of the object to be measured. Principal component analysis (PCA) is a standard technique to identify
the underlying, orthogonal dimensions that explain relations between the variables in the data set.
Principal components (PCs) are linear combinations of the standardized independent variables. The sum of the square of the
coefficients in each linear combination is equal to one. PCs are calculated as follows. The first PC is the linear combination
of all standardized variables that explain a maximum amount of variance in the data set. The second and subsequent PCs are
linear combinations of all standardized variables, where each new PC is orthogonal to all previously calculated PCs and cap-
tures a maximum variance under these conditions. Usually, only a subset of all variables have large coefficients - also called
the loading of the variable - and therefore contribute significantly to the variance of each PC. The variables with high load-
ings help identify the dimension the PC is capturing but this usually requires some degree of interpretation.
In order to identify these variables, and interpret the PCs, we consider the rotated components. This is a technique where the
PCs are subjected to an orthogonal rotation. As a result, the rotated components show a clearer pattern of loadings, where the
variables either have a very low or high loading, thus showing either a negligible or a significant impact on the PC. There
exist several strategies to perform such a rotation. We used the varimax rotation, which is the most frequently used strategy in
the literature. See [11] for more details on PCA and rotated components.

3.3 Univariate and multivariate regression analysis
Univariate logistic regression analysis is performed for each individual measure (independent variable) against the dependent
variable, i.e., no fault/fault detection, in order to determine if the measure is a useful predictor of fault-proneness.
Next, we build multivariate prediction models using logistic regression.. This analysis is conducted to determine how well we
can predict the fault-proneness of classes, when the measures are used in combination. The covariates of the models are de-
termined by using a mixed stepwise selection heuristic [13], which aims at identifying a subset of the available measures with
a high goodness of fit to the data2. We build two types of prediction models
• Using the OO design measures directly as covariates

2 Other heuristics, such as using principal component analysis to pre-select variables, were tried but did not result in significant differences.

ISERN-00-06 – Version 2 4

• Using the basic functions from MARS as covariates. This combination of Mars and logistic regression is purported to
yield higher accuracy models, having a more realistic functional form.

Details about logistic regression and MARS are given in the following sections.

3.3.1 Logistic regression
The dependent variable we use to validate the design measures is binary, i.e., was a failure found in acceptance testing traced
back to a fault in a class? Therefore, we use logistic regression, a standard technique based on maximum likelihood estima-
tion, for the regression analysis. In the following, we give a short introduction to logistic regression, full details can be found
in [13].
A multivariate logistic regression model is based on the following relationship equation (the univariate model is a special
case of this, where only one independent variable appears):

)(

)(

),,(
nn110

nn110

XcXcc

XcXcc

n1 e1
e

XX +++

+++

+
= L

L

Lπ

π is the probability that a fault was traced back to a class after a failure during operation, and the Xis are the design measures
included as independent variables in the model (also called covariates).
Our dependent variable, π, is a conditional probability: the probability that a fault is found in a class, as a function of the
class' structural properties. The curve between π and a single Xi – assuming that all other Xjs are constant - takes a flexible S
shape which ranges between two extreme cases:
• When Xi is not significant, then the curve approximates a horizontal line, i.e., π does not depend on Xi.
• When Xi entirely differentiates fault-prone software parts from the ones that are not, then the curve approximates a step

function.
Such an S shape is perfectly suitable as long as the relationship between Xis and π is monotonic, an assumption consistent
with our empirical hypotheses regarding the design measures. Otherwise, higher degree terms have to be introduced in the
regression equation.

3.3.2 MARS
When analyzing and modeling the relationship between fault detection and inspection effort, as well as other potential effec-
tiveness factors mentioned earlier, one of the main issues is that relationships between these variables are expected to be
complex (non-linear) and to involve interaction effects. Because we currently know little about what to expect and because
such relationships are also expected to vary from one organization to another, analyzing inspection data in order to under-
stand what affects inspections’ effectiveness is usually a rather complex, exploratory process.
When using typical regression techniques, the risk to fit the data with models that may be simplistic is rather difficult to
avoid. For example, we typically resort to log-linear models to handle non-linear relationships. But this comes with a number
of drawbacks such as forcing the model to have a null intercept or making the analysis of interactions impossible (the whole
log-linear model is a multiplicative expression). An alternative to model such complex relationships is artificial neural net-
works [8]. However, such models are difficult to interpret [8] as it is nearly impossible to assess the impact of individual in-
dependent variables on the dependent variables and their interactions. Interpretation is key in our context, as the models we
build are not just used for prediction purposes but are also used to support decision-making and, from a more general per-
spective, gain a better understanding of software engineering processes.
MARS is a novel statistical method presented in [12] and supported by a recent tool developed by Salford Systems3. At a
high level, MARS attempts to approximate complex relationships by a series of linear regressions on different intervals of the
independent variable ranges (i.e., subregions of the independent variable space). It is very flexible as it can adapt any func-
tional form and is thus suitable to exploratory data analysis. One challenge though is to find the appropriate intervals on
which to run independent linear regressions, for each independent variable, and identify interactions while avoiding overfit-
ting the data. This is the purpose of the search algorithms proposed by the MARS methodology. Though these algorithms are
complex and out of the scope of this paper, MARS is based on a number of simple principles. They are introduced below in
order for the reader to understand the results presented in later sections. It is also interesting to note that the results in [8]
show that for datasets of sizes comparable to what we use in this study, MARS models are more likely to be accurate than
artificial neural networks.

3 www.salford-systems.com

ISERN-00-06 – Version 2 5

X

Y

x1 x2

Figure 1 Example Knots in MARS

Figure 1 illustrates a simple example of how MARS would attempt to fit data, in a two dimension space (where Y and X are
the dependent and independent variables, respectively), with piece-wise linear regression splines. A key concept is the notion
of knots, that are the points that mark the end of region of data where a distinct linear regression is run, i.e., where the behav-
ior of the modeled function changes. Figure 1 shows two knots: x1 and x2. They delimit three intervals where different linear
relationships are identified. MARS search algorithms identify appropriate knots in an automated way, though a number of
search parameters have to be set by the user. Of course, in a case with higher dimensions and interactions between independ-
ent variables, the search becomes much more complex but the fundamental principles remain the same. The reader is referred
to [12] for further details.
In order to model the concept of knots and piece-wise linear regression splines, MARS uses the concept of basis function.
These are functions of the form:

max(0, X-c), or
max(0, c-X)

where X is an independent variable and c a constant.
Such basis functions re-express an independent variable X by mapping it to new variables, which are basis functions of the
form described above. For max(0, X-c), X is set to 0 for all values of X up to some threshold value c and is equal to X for all
values of X greater than c. By mixing the two types of basis functions presented above and providing adequate values for c, it
is possible to approximate any functional shape. Determining the right knots (threshold values c) is a key challenge addressed
by MARS search algorithms. In short, basis functions are used as the new independent variables of our regression estimation
models. MARS also looks for interaction terms among basis functions, thus leading to the modeling of the interactions
among independent variables.
In this paper, we are building a classification model. Our dependent variable is binary. From the short introduction above, it
is clear that basis functions are identified assuming the dependent variable is continuous. In this context, as recommended in
[12], we use MARS in two steps: (1) Use the MARS algorithms to identify relevant basis functions, (2) Refit the model with
logistic regression, using the basis functions as covariates.

3.4 Model Evaluation
We evaluate the accuracy of our prediction models in terms of correctness and completeness, two standard measures used for
classification techniques. The model predicts classes as either fault-prone or not fault-prone.
Correctness is the number of classes correctly classified as fault-prone, divided by the total number of classes classified as
fault-prone. Low correctness means that a high percentage of the classes being classified as fault-prone do not actually con-
tain a fault. We want correctness to be high, as inspections of classes that do not contain faults is a waste of resources.
Completeness is defined as the number of faults in classes classified fault-prone, divided by the total number of faults in the
system. It is a measure of the percentage of faults that would have been found if we used the prediction model in the stated
manner. Low completeness indicates that many faults are not detected. These faults would then slip to subsequent develop-
ment phases, where they are more expensive to correct.
In this study, we perform model evaluation in two different contexts:
V-cross-validation within Xpose. V-cross-validation [14] is a technique to obtain realistic estimate of the predictive power of
prediction models, when they are applied to data sets other than those the models were derived from, but no other test data set

ISERN-00-06 – Version 2 6

is available. In short, a V-cross validation divides the dataset into V parts, each part being used to assess a model built on the
remainder of the dataset. In our study, we will divide our 144 observations dataset into 10 randomly selected parts and per-
form a 10-cross validation.
Cross-system validation consists of applying the prediction model built from one data set (Xpose) to a different data set
(Jwriter), and assess the accuracy of these predictions. We use the larger, and therefore more representative data set of Xpose
as fit data, and Jwriter as test data.

3.5 Cost-benefit Model
We need to define a cost-benefit model that helps us determine whether a given fault-proneness model would be economi-
cally viable. We propose a model below that is general, tailorable, and makes a number of assumptions.
• All classes predicted fault-prone are inspected.
• Usually, an inspection does not find all faults in a class. We assume an average inspection effectiveness e, 0 ≤ e ≤ 1,

where e = 1 means that all faults in inspected classes are being detected
• Faults that are not discovered during inspection (faults that slipped through, faults in classes not inspected) later cause

costs for isolating and fixing them. The average cost of a fault when not detected during inspection is fc.
• The cost of inspecting a class is assumed to be proportional to the size of the class.
• For computing a benefit, we need a baseline of comparison. As a baseline, we assume a simple model that ranks the

classes by their size, and selects the n largest classes for inspection. The number n is chosen so that the total size the se-
lected classes is roughly the same as the total size of classes selected by fault-proneness model based on design meas-
ures. It is thus ensured that we compare models where the investment – the cost of inspections – are the same or similar.

For the specification of the model, we need some additional definitions. Let c1,....,cN denote the N classes in the system. For
i=1,… ,N, let
• fi be the number of actual faults in class i.
• pi indicate if class i is predicted fault-prone by the model, i.e., pi=1 if class i is predicted fault-prone, pi=0 otherwise
• si denote the size of class i (measured in terms of the number of methods, though other measures of size are possible).
The cost of inspection is ic · si, where ic is the cost of inspection of one size unit.
Gains and losses are all expressed below in effort units, i.e., the effort saved and the effort incurred assuming inspections are
performed on code, for example.
When using a fault-proneness model, the gain and cost of using the model can be expressed as:

Gain (effort saved):

g_m =defects covered and found
g_m = e · fc · Σi(fi·pi)

Cost (effort incurred):
c_m = direct inspection cost + defects not covered + defects that escape
c_m =ic·Σi(si·pi) + fc·Σi(fi·(1-pi)) + (1-e)·fc·Σi(fi·pi)

In the same way, we express the cost and gains of using the size ranking model to select the n largest classes, so that their
cumulative size is equal or close to Σi(si·pi), the size of classes selected by the model4. For i=1,..,N, let p’i=1 if class i is
among those n largest classes, and p’i=0 otherwise:

g_s = e · fc · Σi(fi·p’i)
c_s = ic·Σi(si·p’i) + fc·Σi(fi·(1-p’i)) + (1-e)·fc·Σi(fi·p’i)

We now want to assess the difference in cost and gain when using the fault-proneness model and size-ranking model, which
is our comparison baseline:

∆gain = g_m – g_s = e · fc · (Σi(fi·pi) - Σi(fi·p’i))
 ∆cost = c_m – c_s = ic·(Σi(si·pi)-Σi(si·p’i)) + fc(Σi(fi·(1-pi)) - Σi(fi·(1-p’i))) + (1-e)·fc(Σi(fi·pi) - Σi(fi·p’i))

4 We may not be able to get the exact same size, but we should be sufficiently close so that we perform the forthcoming simplifications. This is usually not
difficult as the size of classes composing a system usually represent a small percentage of the system size. In practice, we can therefore make such an ap-
proximation and find an adequate set of n largest classes.

ISERN-00-06 – Version 2 7

We select n and therefore p’ so that Σi(si·pi)-Σi(si·p’i) ˜ 0 (Inspected classes have roughly equal size in both situations). We
can thus, as an approximation, drop the first term from the ∆cost equation. This also eliminates the inspection cost ic from the
equation, and with it the need to make assumptions about the ratio fc to ic for calculating values of ∆cost. With this simplifi-
cation, we have

∆cost = fc· (Σi(fi·(1-pi))- Σi(fi·(1-p’i))) + (1-e)·fc· (Σi(fi·pi) - Σi(fi·p’i))
By doing the multiplications and adding summands it is easily shown that

∆cost = - e · fc · (Σi(fi·pi) - Σi(fi·p’i)) = – ∆gain
The benefit of using the prediction model to select classes for inspection instead of selecting them according to their size is

benefit = ∆gain – ∆cost
 = 2∆gain = 2 ⋅ e · fc · (Σi(fi·pi) - Σi(fi·p’i))

Thus, the benefit of using the fault-proneness model is proportional to the number of faults it detects above what the size-
based model can find (if inspection effort is about equal to that of the baseline model, as is the case here). The factor 2 is be-
cause the difference between not finding a fault and having to pay fc, and finding a fault and not having to pay fc is 2fc.
As we will see below, this will allow us, for a given range of e values, to determine the benefits of using a fault-proneness
model in function of fc, the cost of a defect slipping through inspections. Both e and fc are context-dependent but it will still
allow us to assess the order of magnitude of the model net benefits, if any.

4 ANALYSIS RESULTS
In this section we present the details on our analysis results. We start off with the descriptive statistics of the design measures
collected for Jwriter and Xpose (Section 4.1). We then perform principal component analysis (Section 4.2), univariate analy-
sis (Section 4.3) and multivariate analysis using logistic regression and MARS to build and evaluate prediction models from
Xpose data set (Section 4.4). In Section 4.5, we apply the prediction model to Jwriter.

4.1 Descriptive Statistics
Table 1 presents the descriptive statistics for the Xpose and Jwriter. Columns “Max”, “75%”, “Med.”, “25%”, “Min.”,
“Mean” and “Std Dev” state for each measure the maximum value, 75% quartile, median, 25% quartile, minimum, mean
value, and standard deviation, respectively. For Xpose, the use of inheritance is sparse (low mean values of DIT, NOC − note
that in this study the DIT of a root class is 1). This has already been found in many systems before [5][6][9][10]. As a conse-
quence, the polymorphism measures from [2], and the measures counting coupling from/to ancestors/descendents too show
low means and standard deviations. The measure DCAEC, DCMEC, SPD, and DPD have nonzero values only for very few
(six or less) classes. We therefore drop these measures from the remainder of the analysis.

ISERN-00-06 – Version 2 8

Turning the discussion to Jwriter, inheritance is even less frequently used there (average DIT is 1.2). Measures DCAEC,
DCMEC, and SPD do not vary at all in this system. While the number of methods (totmethod, totprivmethod) shows re-
markably similar distributions in both systems, the number of attributes (totattrib, totprivattrib) in Jwriter is about a factor
three higher than in Xpose (and therefore, aggregation coupling is higher, too). Measures OCMIC and OCMEC have about
25% lower means in Jwriter than in Xpose.
To conclude, even though the systems stem from the same development environment, the distributions of the measures vary
considerably in some cases. This is certainly not an ideal situation for our goal to apply prediction models across systems but
it may be a realistic one. The differences in distributions may be partly due to the fact that Xpose had a more experienced
project manager in OO analysis and design, though the development team was the same. In addition, the team was more ex-
perienced when Xpose started, and they used design by contract and enforced much more rigorous programming standards.
All this may have helped them identify better objects and classes, and devise a better system class diagram. The Java libraries
used for Jwriter were not yet mature, requiring work-around solutions to overcome shortcomings of the libraries, i.e., devia-
tions from the originally intended design were necessary. This problem was less severe for Xpose. From a more general
standpoint, in any organization, practices are likely to evolve over time, as people gain more experience and as key personnel
changes. So our datasets may reflect realistic conditions under which fault-proneness models have to be used. We will dis-
cuss further the implications in our analysis below.

4.2 Principal Component Analysis
Table 2 shows the results from PCA performed on the Xpose data set. We identified six orthogonal dimensions capturing
76% of the data set variance. For each PC, we provide its eigenvalue, the variance of the data set explained by the PC (in
percent), and the cumulative variance. Below are the loadings of each measure in each rotated component. Values above 0.7
are set in boldface, these are the measures we call into play when we interpret the PCs.
Based on the loadings of the measures in each rotated component, the PCs are interpreted as follows:
PC1: Class size, in terms of attributes and methods
PC2: The number of children / descendents of a class
PC3: Amount of polymorphism taking place
PC4: Export coupling to other classes
PC5: Import coupling from ancestor classes
PC6: OVO

 Xpose, based on 144 classes Jwriter, based on 68 classes
Measure Mean StdDev Max P75 Median P25 Min Mean StdDev Max P75 Median P25 Min
SPA 0.215 0.711 5 0 0 0 0 0.265 1.074 8 0 0 0 0
DPA 1.09 2.975 16 0 0 0 0 1.691 4.016 20 1.5 0 0 0
SPD 0.076 0.474 5 0 0 0 0 0 0 0 0 0 0 0
DPD 0.778 6.692 78 0 0 0 0 0.75 3.735 28 0 0 0 0
SP 0.292 0.835 5 0 0 0 0 0.265 1.074 8 0 0 0 0
DP 1.868 7.291 78 1 0 0 0 2.441 5.863 30 2.5 0 0 0
NIP 30.94 37.435 199 44 17 4 0 46.16 40.2 145 63 41.5 11 0
OVO 2.41 5.354 42 2 0 0 0 1.191 2.728 19 2 0 0 0
ACAIC 0.153 0.546 4 0 0 0 0 0.044 0.207 1 0 0 0 0
ACMIC 1.493 3.366 24 2 0 0 0 0.176 0.845 5 0 0 0 0
DCAEC 0.097 0.805 9 0 0 0 0 0 0 0 0 0 0 0
DCMEC 0.424 4.299 51 0 0 0 0 0 0 0 0 0 0 0
OCAIC 1.063 2.083 14 1 0 0 0 3.176 4.538 17 4 1 0 0
OCAEC 0.806 1.802 14 1 0 0 0 2.735 6.219 38 2 1 0 0
OCMIC 2.194 3.473 21 3 1 0 0 1.691 2.954 17 2 1 0 0
OCMEC 2.667 7.737 69 2 0 0 0 2.103 5.172 40 2 1 0 0
DIT 2.25 1.752 7 3.5 1 1 1 1.235 1.067 4 2 1 0 0
NOC 0.556 3.083 29 0 0 0 0 0.191 0.629 3 0 0 0 0
Totatrib 3.285 4.697 24 5 1 0 0 9.279 10.78 41 14 7 0.5 0
Totprivatrib 2.944 4.696 24 4 0 0 0 6.397 9.709 39 9 1 0 0
Totprivmethod 2.056 5.081 37 2 0 0 0 2.353 4.367 19 2.5 1 0 0
Totmethod 12.32 13.864 83 18 7 3 0 13.72 12.12 66 19 9 6 1

Table 1 Descriptive Statistics for Xpose and Jwriter

ISERN-00-06 – Version 2 9

 PC1 PC2 PC3 PC4 PC5 PC6
EigenValue: 5.977 2.189 1.515 1.439 1.372 1.213
Percent: 33.205 12.161 8.415 7.995 7.621 6.738
CumPercent: 33.205 45.366 53.781 61.776 69.397 76.135
SPA -0.176 0.062 -0.924 0.037 0.080 0.010
DPA -0.072 -0.486 -0.156 -0.225 0.516 -0.182
ACAIC -0.322 0.166 0.085 0.170 0.747 0.224
ACMIC -0.118 -0.126 -0.202 0.067 0.848 -0.128
SP -0.223 -0.175 -0.891 0.034 0.071 -0.021
DP -0.219 -0.922 -0.026 0.083 0.056 -0.028
NIP -0.712 -0.196 -0.139 -0.091 0.068 0.005
OCAIC -0.801 0.063 -0.283 0.126 0.013 0.197
OCAEC 0.048 -0.026 -0.154 0.801 0.025 -0.245
OCMIC -0.558 -0.578 -0.044 -0.088 -0.004 -0.166
OCMEC -0.207 -0.191 0.101 0.785 0.081 0.071
OVO -0.120 0.005 -0.055 0.087 0.085 -0.862
DIT -0.211 0.120 -0.365 -0.094 0.172 0.456
NOC -0.110 -0.871 0.016 0.256 -0.014 0.029
TotAtrib -0.850 -0.243 -0.140 0.163 0.117 0.054
TotPrivAtrib -0.851 -0.223 -0.153 0.182 0.118 0.057
TotPrivMeth. -0.736 0.053 0.019 -0.082 0.272 -0.199
TotMethod -0.730 -0.347 -0.136 0.116 0.191 -0.447

Table 2 Rotated Components for Xpose data set

These results do partially confirm earlier findings, that import and export coupling to ancestors/descendents/other classes
tend to span orthogonal dimensions, and that import coupling measures are somewhat associated with size measures. Note
that the loadings in PC1 are not as strong as in the other PCs, the correlation between OCAIC and TotAtrib as measured by
Pearson’s r is 0.7, i.e., the measures explain less than 50 percent of the variation of each other.

4.3 Univariate Analysis
The results of the univariate analysis on Xpose are summarized in Table 3. For each measure, the regression coefficient,
along with its standard error, and the statistical significance (p-value), which is the probability that the coefficient is different
from zero by are provided (see columns “Coef.”. “S.E.”, “p-val “, respectively).
As is visible from Table 3, most measures are found to be significantly (at α=0.05) related with fault-proneness5. All regres-
sion coefficients are positive, i.e., the higher coupling, polymorphism, or size of the class, the higher its fault-proneness. This
is consistent with the general hypotheses associated with these measures [6][2], and confirms results from earlier studies [5]
[6].

5 However, this may be due in part to repeated testing that increases the probability to find a significant relationship by chance. Though they are simple tech-
niques to address this problem, e.g., Bonferroni procedure: divide your significance level (α) by the number tests performed, we use only univariate analysis
here as a first variable pre-selection stage. As a result, we will not use here any technique to alleviate the problems due to repeated statistical testing.

ISERN-00-06 – Version 2 10

Msr. Coef. S.E. p-val
SPA 0.719 0.306 0.019
DPA 0.241 0.075 0.001
SP 0.624 0.246 0.011
DP 0.242 0.069 0.000
NIP 0.042 0.008 0.000
OVO 0.026 0.033 0.428
ACAIC 0.625 0.334 0.062
ACMIC 0.171 0.066 0.010
OCAIC 0.536 0.142 0.000
OCAEC 0.147 0.099 0.137
OCMIC 0.447 0.092 0.000
OCMEC 0.099 0.041 0.016
DIT 0.182 0.106 0.086
NOC 0.740 0.380 0.052
TotAtrib 0.244 0.054 0.000
TotPrivAtrib 0.233 0.053 0.000
TotPrivMeth. 0.183 0.057 0.001
TotMethod 0.087 0.020 0.000

Table 3 Univariate Analysis Results for Xpose

Inheritance measures show a weak trend with fault-proneness (deeper classes and classes with a higher number of children
are fault-prone). However, these trends are not significant at α=0.05. Also, this result is yet again different from what was
found in [5], where deeper classes too were more fault-prone, but classes with higher NOC were less fault-prone, and [6],
where deeper classes were less fault-prone, and NOC not significant at all. As discussed in [6], the impact of inheritance is
likely to vary according to the inheritance strategy used and the experience of designers.

4.4 Multivariate Analysis
In this section we present the multivariate prediction models that were built for the Xpose data set, using a mixed stepwise
selection procedure [13]. Two models were built, a “linear” model (Section 4.4.1) that uses directly the design measures as
independent variables, and a MARS model (Section 4.4.2) that uses the MARS basic functions as covariates.
We also assess the model accuracy using a 10-cross-validation within Xpose. This is done for two purposes:
• To compare the model accuracy to results from previous studies, which also performed 10-cross-validation within the

same system.
• To establish a comparison baseline when the models are then applied to the Jwriter data set in Section 4.5.

4.4.1 Linear Model
The multivariate linear model is shown in Table 4. The stepwise variable selection procedure retained an import coupling
measure (OCMIC), an export coupling measure (OCMEC), and NIP (belonging to the “class size” dimension as described in
Section 4.2) in the model. This is consistent with previous results [5][6] where class size, import coupling and, to a lesser
extent, export coupling play a role in fault-proneness.

Measure Coeff Std. Err P Value
NIP 0.031 0.009 0.001
OCMIC 0.216 0.097 0.026
OCMEC 0.066 0.034 0.055
Intercept -3.355 0.492 0.000

Table 4 Linear Model

The results from performing a 10-cross validation are summarized in Table 5 and Figure 2. In Table 5, Classes with a pre-
dicted probability larger than 0.5 are classified as fault-prone, the others are predicted not fault-prone. The following contin-
gency table shows how predicted and actual faulty classes overlap, and how many faults are contained by faulty classes,
whether predicted faulty or not. 14 out of the 19 classes that are predicted fault-prone actually do contain a fault (73.6% cor-
rectness), these classes contain 82 out of the 132 faults in the system (62% completeness).

ISERN-00-06 – Version 2 11

While the model is capable of identifying 19 out of 144 classes (i.e., 13% of all classes), which contain over 60% of all faults,
the fact that we still miss 40% of the faults if we relied on the model prediction may hamper the model’s practicality. We will
investigate below this issue using the cost-benefit model introduced in Section 3.4.

 Predicted
 π<0.5 π>0.5

Σ

No fault 108 5 113
Actual Fault 17

(50 faults)
14
(82 faults)

31
(132 faults)

Σ 125 19 144
Table 5 Results of 10-Cross Validation of linear model

The above figures are based on a cutoff value of π=0.5 for the distinction fault-prone/not fault-prone, and the table only gives
a partial picture, as other cut-off values are possible. Figure 2 shows the correctness and completeness numbers as a function
of the threshold π.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Correctness Completeness

Figure 2 Correctness and completeness - linear model

4.4.2 MARS Model
We used the MARS tool to run the MARS algorithms and we obtained the following basis functions:

BF3 = max(0, OCMIC - .129804E-07) ~ OCMIC
BF5 = max(0, 4.000 - DIT) * BF3
BF6 = max(0, OCMEC - 1.000)

After re-running a logistic regression with the basis functions above (using OCMIC for BF3), we obtain the results in Table
6.

Measure Coeff Std. Err p-value
OCMIC 0.947 0.188 < 0.001
BF5 -0.244 0.064 0.0002
BF6 0.096 0.055 0.0818
Intercept 2.867 0.408 < 0.001

Table 6 Mars Model

The MARS model is similar to the linear model in the sense that it involves OCMIC and OCMEC, the latter being a weaker
predictor. The difference is that DIT is selected as opposed to NIP in the linear model. Also, DIT clearly interacts with
OCMIC. The sign of the coefficient of BF5 suggests that OCMIC has a stronger impact when DIT increases, that is import
coupling impacts fault-proneness further at deeper levels of inheritance. Though more investigation is required, the com-
pound effect of inherited and imported class elements may generate an even higher complexity in terms of understanding and
verifying classes.

ISERN-00-06 – Version 2 12

Below is the contingency table that results when we apply the 10-cross validation to the MARS model. 15 of the 22 classes
predicted fault-prone actually are faulty (68% correctness), these classes contain 97 of the 132 classes (73% completeness).
The MARS model does not show a strong difference with the linear model in terms of correctness. But in terms of complete-
ness, it performs far better. In other words, it is more accurate for the classes containing larger numbers of faults. Correctness
and completeness as a function of π are shown in Figure 3. As can be seen, the chosen cutoff value of 0.5 is in fact a good
tradeoff between correctness and completeness for this model.

 Predicted
 π<0.5 π>0.5

Σ

No fault 106 7 113
Actual Fault 16

(35 faults)
15
(97 faults)

31
(132 faults)

Σ 122 22 144
Table 7 Results of 10-cross validation of MARS model

Overall, the accuracy of the models presented here is lower than what was found in previous studies [5][6], where models
achieved over 80% correctness and 90% completeness in 10-cross-validation. One explanation for the worse performance in
the models here is that the previous studies used a more complete set of design measures. Especially, coupling measures
based on method invocations were found to be very significant indicators of fault-proneness. These measures were not avail-
able for the present study.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Correctness Completeness

Figure 3 Correctness and completeness – MARS model

4.4.3 Cost/Benefit Analysis for Linear and MARS model

Figure 4 shows the benefit of using the linear and MARS model, respectively, to select classes for inspection over a simple
size-based selection of classes for inspection, as defined in Section 3.5. This is possibly optimistic as there may be other ways
to select classes, e.g., based on expert opinion. But we need a quantifiable comparison baseline for the benefit model and, in
addition, a model-based class selection allows us to take advantage of the previous experience of the development organiza-
tion and making it available to less experienced developers. Moreover, in practice finding the right experts at the right time
may not be practical and asking them to rank classes may turn out to be a tedious and difficult task to perform.

ISERN-00-06 – Version 2 13

-10
0

10
20
30
40
50
60
70
80

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Number of classes inspected

Benefit [fc] MARS Linear

Figure 4 Benefit graph for MARS model (inspection effectiveness e=80%)

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60 70 80 90 100110 120 130140
classes selected (Mars/Linear model)

0 6 13 22 25 30 37 43 46 53 63 71 84 99 127

classes selected (size-rank model)

Mars Linear Size-Rank

Figure 5: Fault density of classes selected for inspection for

Mars, Linear, and size -rank (comparison benchmark) model

The benefit is shown as a function of the number of classes selected for inspection by the fault-proneness models, which is
itself dependent on the threshold π (An alternative way to look at this is that we rank the classes by predicted fault-proneness
and then select a given number of classes based on this ranking). The benefit is expressed in multiples of fc, the cost of a fault
that goes undetected in inspections, and assumes an inspection effectiveness e of 0.8 (cf. Section 3.5 for how e and fc affect
the model benefit). In a literature survey of industry data [3], fc typically ranged between 4.5 and 17 person hours, with a
most likely value of 6 person hours. So we can see that the type of benefits illustrated in Figure 4 can represent substantial
savings.
As a general trend, both curves first show a steep rise until they reach their maximum of 44.8fc (linear) and 75.8fc (MARS) at
around n=28 classes, and then gradually descend until the benefit is back to zero when all classes are selected for inspection.
As a comparison, for our data set, a hypothetical optimal model that can perfectly rank the classes by the actual number of
faults they contain reaches its maximum benefit of 118fc at n=31 classes (still assuming the same inspection efficiency
e=0.8). The linear model only achieves 38% of this theoretical maximum whereas the MARS model with 65% is much
closer, though there is still room for improvement.
Figure 5 shows the fault density (number of faults per method) of the classes selected for inspection by the MARS and Linear
model, as well as the size-rank model, as a function of the number of classes selected. The figure features two horizontal
axes: the axis at the bottom applies to the curve of the Mars and Linear models, the axis shown at the top of the graph applies
to the size-rank model. The top axis was chosen so that at any vertical cross section in Figure 5, the size of the classes se-

ISERN-00-06 – Version 2 14

lected for inspection by the size-rank model is about the same as those selected by the Mars and Linear model. This is in line
with the strategy of our cost-benefit model to select the number of classes for the size-rank model, as defined in Section 3.5.
We thus achieve traceability of the fault density curves with the cost benefit curves Figure 4 – high benefits correspond with
large discrepancies in fault density with the size-rank model and vice versa. Naturally, the number of classes at the top axis
grows slower first, as the size-rank model selects bigger and therefore fewer classes, but catches up for higher values of n in
the rightmost third of Figure 5.
For n<10, none of the models shows a consistently significant benefit in. The steep benefit rise begins with n=10 classes.
This is also visible from the fault densities in Figure 5. All three models achieve their peak in fault-density very early (before
n=5). This is due to an individual class with large absolute number of faults (24) that is found early by all three models –
hence the models achieve similar fault densities, and the MARS and linear model have no benefit over the size-ranking
model for small values of n.
Also worth noticing Figure 5 is that overall the fault densities of the classes selected steadily decrease as n increases. This is
an encouraging result as we want our models to show such a pattern. However, in the range n ∈ [15 35], the MARS model
clearly select higher density classes than both the Linear and size-based models. This explains the higher benefits observed
in Figure 4 and this is an important advantage of the MARS model as the range where it shows clearly superior benefits is the
range where, in practice, the threshold between inspected and non-inspected classes could very likely be selected (namely,
the inspection of 10%-25% of all classes).
The benefit curves for the linear and MARS model (Figure 4) both show a sharp decline immediately following their respec-
tive peaks at about n=28. To explain this observation, recall that the model benefit is expressed relative to the performance of
the size-ranking benchmark model. At n=30 the size-ranking model selects a (mid-sized) class containing a large number of
faults (19). At this point, the performance of the benchmark model greatly improves (also visible by the increase in fault-
density for the size-ranking model at n-30 in Figure 5) – hence the relative decrease in the benefit of the MARS and Linear
model at this value of n.
Varying the inspection effectiveness e amounts to multiplying the benefit curves by a constant factor. For instance, if we as-
sume an inspection effectiveness only half as high (e=0.4), the peak of the MARS curve will be at 37.9fc.

4.5 Application of Xpose models to Jwriter
The straightforward way to apply the models built from Xpose to the Jwriter classes is to calculate the predicted fault-
proneness for each class in Jwriter; if it is above a certain threshold, the class is considered fault-prone and undergoes inspec-
tion, otherwise not. Figure 6 and Figure 7 show the resulting correctness and completeness graphs for the linear and MARS
model, respectively.

0
0.1
0.2

0.3
0.4
0.5
0.6
0.7

0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Correctness Completeness

Figure 6: Correctness/completeness for linear model a pplied to Jwriter

ISERN-00-06 – Version 2 15

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Correctness Completeness

Figure 7: Correctness/completeness for MARS model applied to Jwriter

A good tradeoff between correctness and completeness can be achieved at the very low cutoff values of 0.22 (linear) and 0.06
(MARS), at which point we have completeness and correctness values of about 60% for both models. These values are
slightly lower than what was found for the models in 10-cross-validation. In general, this result suggests that we have to ex-
pect an additional deterioration of the fault-proneness models’ accuracy when they are applied to new systems. Moreover, the
predicted probabilities cannot be subjected to usual interpretations for the selection of cut-off values for class fault-proneness
estimation. MARS suggest a reasonable cut-off value at 0.06, which is significantly different from the typical 0.5 threshold.
However, as investigated below, cross-systems fault-proneness models can still present benefits if they are used in a different
way.
The probabilities predicted by the Xpose model for Jwriter classes are very low by usual interpretation standards. Table 8
shows the distributions of predicted probabilities for the MARS and Linear model, for the 10-cross-validation within Xpose
(shown in Section 4.4), and when applied to Jwriter. The MARS and Linear model show similar distributions for the 10-
cross-validation within Xpose. When applied to Jwriter (Table 9), the predicted probabilities of the MARS model clearly
exhibits a lower distribution, though the Linear model has a slightly higher distribution.
This latter observation is explained by the distributions across the two systems in terms of NIP, inheritance (DIT), and im-
port/export coupling (OCMIC/OCMEC), the predictor variables of our model. For the MARS model, DIT and the coupling
measures exhibit lower means values in Jwriter than in Xpose (cf. Section 4.1 on descriptive statistics). It can therefore ex-
plain the low predicted probabilities. For the Linear model, NIP shows a much higher distribution in Xpose than in Jwriter,
hence the higher predicted probabilities.

 Mean StdDev P75 Median P25
MARS 0.210 0.259 0.189 0.079 0.061
Linear 0.211 0.263 0.285 0.086 0.043

Table 8 Distribution of predicted probabilities (10-cross validation within Xpose)

 Mean StdDev P75 Median P25
MARS 0.133 0.214 0.086 0.059 0.054
Linear 0.257 0.248 0.335 0.190 0.070

Table 9: Distribution of predicted probabilities (cross-system application to Jwriter)

Furthermore, the history of these systems can explain the difference between actual and predicted fault frequencies. Jwriter
was developed first. The team was less experienced with Java, the Java libraries were less mature and contained more bugs,
and the project manager was different. Even the design strategy (design by contract) and the coding standards were much
stricter on Xpose. Therefore, relative to its structural properties and for the reasons explained above, Jwriter is much more
fault-prone, as a system, than Xpose, and the model built from Xpose underestimates the fault-proneness of the Jwriter
classes.In Xpose, 31 out of 144 classes actually are faulty (21%), in Jwriter, 27 out of 68 classes are faulty (39%). In Xpose, a
threshold of 0.5 was good enough to classify roughly 20% of all classes as fault-prone. Though in Jwriter a higher percentage
of classes must be selected to achieve acceptable correctness and completeness values, a lower threshold is required due to
the shift to lower predicted probabilities.

ISERN-00-06 – Version 2 16

From a more general standpoint, this suggests that, in the common situation where development practices are changing and
teams are evolving and learning, an absolute, general interpretation of predicted probabilities will not be possible when they
come from prediction models built on different systems. There are system factors that are likely to come into play, even in
high maturity development environments. Unfortunately, this hinders us from using a pre-determined cut-off value and pre-
dicted probabilities to classify classes according to their fault-proneness.
In order to still be able to use and assess the prediction models from Xpose, we apply them in a context where we rank the
classes of Jwriter by their predicted fault-proneness. Then, we can assume that the N most fault-prone classes will undergo
specific and thorough inspection. Selecting N can be done based on historical data telling us, for example, what is the typical
proportion of faulty classes (Note that this proportion may evolve over time), or, since resources for inspections or testing are
usually constrained, we can choose N based on these available resources.
We will perform one ranking of the entire Jwriter class set according to their predicted fault-proneness. Based on this rank-
ing, we select the N classes with highest predicted fault-proneness. The question then is: How does the maximum number of
faults that can be potentially detected increase with N? If the prediction model is useful, we would expect the number of
faults found to increase sharply in the beginning, and then reach a plateau.
Figure 8 shows the cumulative number of faults versus class fault-proneness ranking, based on the predictions of the linear
model for the Jwriter data. The lower straight line is the percentage of faults that we could expect when we randomly rank the
classes (number of faults is assumed to be proportional to the number of classes). The upper straight line is what the ideal
model would yield, if we were able to rank the 27 faulty classes, containing one fault each, as the 27 most fault-prone classes.
We can see in Figure 8 a large hump among the least fault prone classes. This is caused by 7 classes that are unexpectedly
faulty, according to the linear model. In short, the curve does not have the shape we would expect and this model does not
work very well.
Figure 9 shows the graph that results when we rank the classes by predicted fault-proneness of the MARS model. This figure
fits better our expectations than the linear model in the sense that the curve reaches a plateau after rank 35. There is a very
small hump towards the end caused by 2 classes having one fault each, but no major abnormality. We can also see that the
first 15 most fault-prone classes are almost exclusively faulty and close to the optimal line.

0

5

10

15

20

25

30

C
um

ul
at

iv
e

Fa
ul

ts
 o

f c
la

ss
es

 (V
er

si
on

 0
.5

)

0 10 20 30 40 50 60 70 80
Classes in decreasing order of their predicted fault -proneness

Prediction by chance

Optimal Model
(Perfect
Prediction)

Figure 8 Cumulative faults versus fault-proneness ranking for linear model

ISERN-00-06 – Version 2 17

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80

Classes in decreasing order of their predicted fault -proneness

C
um

ul
at

iv
e

Fa
ul

ts
 o

f c
la

ss
es

 (V
er

si
on

 0
.5

)

Optimal Model
(Perfect
Prediction)

Prediction by chance

Figure 9 Cumulative faults versus fault-proneness ranking for MARS model

Figure 10 shows the benefit curves for the linear and MARS model, respectively, again assuming inspection effectiveness of
e=0.8. And again, the general trend is that, both curves first show a rise until they reach their maximum of 14.4fc at n=35
classes (linear) and 17.6fc at n=31 classes (MARS), respectively, and then gradually descend until the benefit is back to zero
when all classes are selected for inspection. The models reach their peaks rather late (more than half of the Jwriter classes for
the linear model), and the maximum benefit values of 17.6fc/14.4fc is lower than for Xpose, too. Note, however, that Jwriter
is a smaller system, an absolute comparison with the 10-cross validation results in Xpose is not possible. A theoretically op-
timal model that can perfectly rank the classes by the actual number of faults they contain reaches its maximum benefit of
32fc at n=27 classes (still assuming the same inspection efficiency e=0.8), that is less than twice that of the MARS model.
The MARS model, however, clearly shows benefits for practically interesting numbers of classes inspected but, as would be
expected, not on the extreme right of the graph when more than 60 classes are selected for inspections. The MARS model
benefit curves clearly shows that clear benefits can be obtained in using such a model to select classes to undertake (addi-
tional) inspections or testing.
We further investigate the performance of the MARS model and try to explain by there are significant benefits in Figure 10.
The positive benefit of the model would suggest that the detection of faults increases faster than the number of methods in-
spected. We therefore normalize the number of methods and faults by their respective total to express them as a percentage.
The result is shown in Figure 11, which contains the cumulative number of faults (upper curve) vs. cumulative number of
methods (lower curve) on the same scatterplot.

-5

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Number of classes inspected

Benefit
[fc] Mars Linear

Figure 10: Benefit Curve of Linear and MARS models

for Jwriter (inspection effectiveness e=80%)

ISERN-00-06 – Version 2 18

We reach a maximum of 20% difference between the percentages of methods and faults, before starting a plateau. This dem-
onstrates that the ranking is able to identify classes with higher fault-density and explains the benefit results presented earlier.
Also, the lower curve approximates a linear growth, which indicates that the ranking performed by our model is significantly
different from the ranking of the classes by their number of methods.

 20 30 40 50 60 70
Classes in decreasing order of their predicted fault-proneness

0, 0

Cumulative % of faults
In classes (Version 0.5)

50

70

30

90

100

 10

Cumulative % of Methods
 in classes (Version 0.5)

Optimal Model
(Perfect
Prediction)

 Prediction by Chance

Figure 11 Cumulative faults versus number of methods in percent

Furthermore, when we rank the classes by the number of methods in decreasing order, and look at the cumulative number of
faults (Figure 12). The curve appears close to the chance line for the 20 predicted most fault-prone classes. In other words,
with this ranking we only catch as many faults as could be expected by the number of selected classes alone. Thus, the class
ranking produced by the MARS model built from the Xpose data set is not outperformed by a simple strategy that would be
immediately applicable within Jwriter based on class size. This further justifies the use of a model such as the one we devel-
oped using the Xpose data. Note that when using the number of data members or attributes as a size measure, results are very
similar to what we observe for number of methods.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 C
um

ul
at

iv
e

Fa
ul

ts
 o

f c
la

ss
es

 (V
er

si
on

 0
.5

)

Rank of classes based on decreasing no. of total methods

Optimal Model
(Perfect Prediction)

Prediction by chance

Figure 12 Cumulative faults versus size ranking (based on number of methods in the class)

4.6 Using Fault-proneness Models to Quantify Quality Improvement
We have seen above that Jwriter was far more fault-prone than what would be expected based on the fault-proneness model
built using Xpose data. After investigation, as discussed above, our best explanations were learning effects and the differ-
ences in conditions under which the two systems were developed, e.g., practices, management. This is interesting as it shows
how such fault-proneness models can be used in order to quantify the improvement in quality across systems after factoring
out the structural properties that make such system difficult to compare. For example, the number of faulty classes or faults

ISERN-00-06 – Version 2 19

can be predicted based on history (completed systems). Then the relative difference between predicted and actual fault counts
can be used to quantify improvement.

4.7 Class Ranking and Iterative Development
Though ranking classes allows us to use the predictions of the Xpose model in Jwriter, there are practical implications if this
strategy is to be applied on projects. In order to perform such a ranking, we must first have all classes available for measure-
ment. Object-oriented development, however, is typically iterative. To rank the classes by fault-proneness, we would have to
hold inspections until the last iteration, when all classes are fully implemented and ready to be measured. In an iterative de-
velopment, we could rank the classes within each new iteration and select a certain percentage of the classes with highest
ranks in that iteration for inspection. However, we may have iterations with relatively many high-risk classes, then we would
select too few classes for inspection. For iterations with few high-risk components, too many classes would be selected for
inspection. So we would expect a higher misclassification rate this way, than when we select classes for inspections based on
one ranking of the entire data set. This effect should be stronger, the smaller the iterations are.

5 CONCLUSIONS
One of the main objectives of this paper is to assess whether fault-proneness models, based on design measurement, are ap-
plicable and can be viable decision making tools when applied from one object-oriented system to the other, in a given envi-
ronment. This question is of high practical interest as it determines whether such models are worth investigating. But little is
currently known on the subject. In this paper we apply a fault-proneness model built on one system to another system. These
two systems have been developed with a nearly identical development team (a different project manager), using a similar
technology (OO Analysis and design and Java) but different design strategies and coding standards. We believe that the con-
text of our study represents realistic conditions that are often encountered: change in personnel, learning effects, evolution of
technology. In this context, we want to assess whether an organization can build viable models to focus verification and vali-
dation on fault-prone parts of systems.
Our results suggest that applying the models across systems is far from straightforward. Even though the systems stem from
the same development environment, the distributions of measures change and, more importantly, system factors (e.g., experi-
ence, design method) affect the applicability of fault detection predicted probabilities. It can be argued that, in a more homo-
geneous environment, this effect might not be as strongly present as in the current study. But we doubt whether such envi-
ronments exist or are in any case representative. It is likely, however, that the more stable the development practices and the
better trained the developers, the more stable the fault-proneness models.
We then use the prediction model to rank classes of the second system according to their predicted fault-proneness (using the
model built on the first system). When used in this manner, the model can in fact be helpful at focusing verification effort on
faulty classes. Though predicted defect detection probabilities are clearly not realistic based on actual fault data, the fault-
proneness class ranking is accurate. The model performs clearly better than chance and also outperforms a simple model
based on class size, e.g., number of methods.
Another objective of the paper is to apply a novel exploratory analysis technique (Multivariate Adaptive Regression Splines:
MARS) to the construction of fault-proneness models. Because we know little about what functional form to expect, such
exploratory techniques that help finding optimal model specifications may be very useful. Our results support that and sug-
gest that the model generated by MARS outperforms a logistic regression model where the relationship between the logit and
the independent variables is linear (log-linear model).
A third contribution of the paper is that we propose and apply a specific cost-benefit model for fault-proneness models. The
goal is to assess the economic viability of such fault-proneness models as a function of a number of factors, e.g., defect detec-
tion effectiveness. Results suggest that, under realistic assumptions, fault-proneness models can provide substantial benefits,
even when used across systems.
Future research needs to focus on collecting larger datasets, involving large numbers of systems from a same environment. It
is crucial, in order to make the research on fault-prone models of practical relevance, that they be usable from project to pro-
ject. Their applicability depends on their capability to predict accurately and precisely (fine grain predictions) where faults lie
in new systems, based on the development experience accumulated on past systems.

ACKNOWLEDGMENTS
We would like to thank Dan Steinberg, from Salford Systems, for his advice on the use of the MARS tool (www.salford-
systems.com). Also, we wish to thank the software engineers of the Advanced Technoloy SolutionGroup from Oracle Brazil:
Gonsalo Nunes, Caricio Afonso, Umberto, Paulo Neto, Rafael Farnase, Andre Veiga, and Aristeu Pires for building Xpose,
Jwriter, and Jmetrics. Their crucial help was very much appreciated. Amirul Khan should also be thanked for his support in
generating some of the graphs. Lionel Briand was supported in part by the Canadian National Science and Engineering Re-
search Council (NSERC).

ISERN-00-06 – Version 2 20

REFERENCES
All referenced ISERN reports are available at http://www.iese.fhg.de/ISERN.
[1] A. Barbosa da Veiga, R. Farnese W. Melo, “JMetrics Java Metrics Extractor: An Overview”, University of Brasilia, Dep. of Com-

puter Science, Under-Graduating Final Project, Brasilia, DF, Brazil, 1999. Also published as a Catholic University of Brasilia, Master
on Informatics, Software Quality Engineering Group, Technical Report, UCB-QSW-TR-1999/01.

[2] S. Benlarbi,. W. Melo,. "Polymorphism Measures for Early Risk Prediction", Procedings of the Proceedings of the 21st International
Conference on Software Engineering, ICSE 99, (Los Angeles, USA 1999) 335-344.

[3] L. Briand, K. El Emam, O. Laitenberger, T. Fussbroich, "Using Simulation to Build Inspection Efficiency Benchmarks for Develop-
ment Projects", Fraunhofer Institute for Experimental Software Engineering, Germany, 1997, ISERN-97-21

[4] L. Briand, W. Melo, P. Devanbu, "An Investigation into Coupling Measures for C++", IEEE International Conference on Software
Engineering (ICSE), 1997, Boston, USA.

[5] L. Briand, J. Wüst, J. Daly, V. Porter, “Exploring the Relationship between Design Measures and Software Quality in Object-
Oriented Systems”, Journal of Systems and Software, 51(2000) p 245-273. Also Technical Report ISERN-98-07, 1998.

[6] L. Briand, J. Wüst, H. Lounis, S. Ikonomovski, “Investigating Quality Factors in Object-Oriented Designs: an Industrial Case Study”,
Proceedings of the 21st International Conference on Software Engineering, ICSE 99, (Los Angeles, USA 1999) 345-354.

[7] L. Briand, S. Morasca, V. Basili, “Property-Based Software Engineering Measurement”, IEEE Transactions of Software Engineering,
22 (1), 68-86, 1996.

[8] R. D. De Veaux, D. C. Psichogios, L. H. Ungar, "A Comparison of two Nonparametric Estimation Schemes: MARS and Neural Net-
works", Computers Chemical Engineering, Vol 17, N 8, pp. 819-837, 1993

[9] S.R. Chidamber, C.F. Kemerer, “A Metrics Suite for Object Oriented Design”, IEEE Transactions on Software Engineering, 20 (6),
476-493, 1994.

[10] S. Chidamber, D. Darcy, C. Kemerer, “Managerial use of Metrics for Object-Oriented Software: An Exploratory Analysis”, IEEE
Transactions on Software Engineering, 24 (8), 629-639, 1998.

[11] G. Dunteman, “Principal Component Analysis”, SAGE Publications, 1989.
[12] J. Friedman, "Multivariate Adaptive Regression Splines", The Annals of Statistics, vol. 19, pp. 1-141, 1991
[13] D.W. Hosmer, S. Lemeshow, “Applied Logistic Regression”, John Wiley & Sons, 1989.
[14] M. Stone, “Cross-validatory choice and assessment of statistical predictions”, J. Royal Stat. Soc., Ser. B 36, 111-147.

APPENDIX: DEFINITION OF DESIGN MEASURES
In the following table we provide short definitions of all measures used in the paper. For detailed definitions, references to
the source of each measure are provided.

Name Definition
spa [2] Static polymorphism in ancestors
dpa [2] Dynamic polymorphism in ancestors
spd [2] Static polymorphism in descendants
dpd [2] Dynamic polymorphism in descendants
sp [2] Static polymorphism in inheritance relations. sp=spa+spd
dp [2] Dynamic polymorphism in inheritance relations. dp=spa+spd
nip [2] Polymorphism in non-inheritance relations.
ovo [2] Overloading in stand-alone classes
acaic [4]
acmic [4]
dcaec [4]
dcmec [4]
ocaic [4]
ocaec [4]
ocmic [4]
ocmec [4]

These coupling measures are counts of interactions between classes. The measures distinguish the relationship between classes
(inheritance or not), different types of interactions, and the locus of impact of the interaction.
The acronyms for the measures indicates what interactions are counted:
• The first letter indicates the relationship (A: coupling to ancestor classes, D: Descendents, O: Others, i.e., no inheritance

relationships).
• The next two letters indicate the type of interaction:

• CA: Class-Attribute interactions between classes c and d: c has an attribute of type d.
• CM: Class-Method interactions between classes c and d: c has a method with a parameter of type class d.
• The last two letters indicate the locus of impact: IC for import coupling, EC for export coupling.

dit [9] The depth of the class in the inheritance tree. Root classes have a DIT of 1 in this paper.
noc [9] The number of children of a class.
totatrib The total number of attributes in the class
totprivatrib The number of private attributes in the class
totprivmethod The number of private methods in the class
totmethod The total number of methods in the class

Table 10: Definitions of measures

