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ABSTRACT 
A number of papers have investigated the relationships between design metrics and the detection of faults in object-oriented 
software. Several of these studies have shown that such models can be accurate in predicting faulty classes within one par-
ticular software product. In practice, however, prediction models are built on certain products to be used on subsequent soft-
ware development projects. How accurate can these models be considering the inevitable differences that may exist across 
projects and systems? Organizations typically learn and change. From a more general standpoint, can we obtain any evidence 
that such models are economically viable tools to focus validation and verification effort? This paper attempts to answer 
these questions by devising a general but tailorable cost benefit-model and by using fault and design data collected on two 
mid-size Java systems developed in the same environment. Another contribution of the paper is the use of a novel exploratory 
analysis technique (MARS) to build such fault-proneness models, whose functional form is a priori unknown.  
Results indicate that a model built on one system can be accurately used to rank classes within another system according to 
their fault-proneness. The downside, however, is that, because of system differences, the predicted fault probabilities are not 
representative of the system predicted. However, our cost-benefit model demonstrates that the MARS fault-proneness model 
is potentially viable, from an economical standpoint. The linear model is not nearly as good, thus suggesting a more complex 
model is required. 

1 INTRODUCTION 
Measures of structural design properties such as coupling or complexity are widely considered to be indicators of external 
system quality attributes, such as reliability or maintainability. Many measures taking structural properties of object-oriented 
systems into account were proposed in the literature [2][9][7]. A number of case studies have provided empirical evidence 
that by using regression analysis techniques, highly accurate prediction models for class fault-proneness can be built from 
existing OO design measures [5][6]. The accuracy of the prediction models in these studies is usually quantified by some 
measure of goodness of fit of the model predictions to the actual fault data, or using within-system cross-validation tech-
niques, such as V-cross-validation [14]. 
The purpose of building such models is to apply them to other systems (e.g., different systems developed in the same devel-
opment environment), in order to focus verification and validation efforts on fault-prone parts of those systems. But little is 
known about the accuracy of prediction models when they are actually applied under realistic conditions. In that sense, the 
existing studies can mostly be characterized as feasibility studies. 
In this paper, we build a fault-proneness prediction model based on a set of OO measures using data collected from a mid-
sized Java system, and then apply the model to a different Java system developed by the same team. We then evaluate the 
accuracy the model’s prediction in that system and the model’s economic viability using a cost-benefit model. 
A second objective is to use a novel exploratory, regression-based technique called MARS (Multivariate Adaptive Regres-
sion Splines [12]). We investigate whether this technique can result in more accurate fault-proneness models than typical 
logistic regression models assuming a linear relationship between covariates and the logit term.  
Results indicate that a model built on one system can be used to accurately rank classes within another system according to 
their fault-proneness. However, only the MARS model is accurate whereas the linear logistic regression model does not seem 
appropriate. A cost-benefit model demonstrates such a fault-proneness model is potentially viable as it can provide clear 
benefits. However, the probabilities of a model built on one system applied to another suggest that differences in system fac-
tors make these probabilities meaningless, though the class ranking is preserved. In other words, if this is confirmed, such 
models’ probabilities would need to be calibrated for each system. The implications of such a limitations are discussed be-
low.  
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The paper is structured as follows. Section 2 describes the setting of the study. Section 3 briefly lays down our analysis 
methodology and introduces the modeling techniques, logistic regression, and MARS. Analysis results are detailed in Section 
4, and we draw our conclusions in Section 5. 

2 DESCRIPTION OF STUDY SETTING  
This section describes the systems used for this study, the data collected, and the data collection procedures. 

2.1 Systems  
This subsection provides details about the two Java systems used in this study, Xpose and Jwriter, both developed at Oracle 
Brazil. Jwriter was developed first and then Xpose started. But Xpose is the larger of the two systems in terms of fault data 
and number classes, and as such more fit for us to build a prediction model. We will therefore use Xpose for the fit data set 
from which we build our prediction models. Jwriter, the smaller system, will be used as test data set. We try to put ourselves 
in a situation where one would have sufficient1 design and fault data from one or a few projects and would use such data to 
build fault-proneness models to be used on new projects. Though, due to the characteristics of the data sets at hand, we had to 
use the two projects in their reverse order of performance (Xpose and Jwriter are used to build and test the model, respec-
tively), we believe this has no effect on answering our research questions: the differences between projects are still there and 
are going to affect the model’s accuracy. Our research design will simply have implications in the way we interpret the re-
sults.  

2.1.1 Xpose 
Xpose for Java is an application that allows its users to display and edit XML documents. With Xpose one can traverse an 
XML document's hierarchy, explore the attributes of a particular node in that hierarchy, or view and edit the XML source 
associated with it. The application offers a Document Browser, an XML rendering machine, and a property inspector and 
contents editor to view and modify XML elements. 
Xpose was implemented under Sun's JDK 1.2, using the Swing library classes for the GUI, and a prefabricated XML Parser 
also developed at Oracle. Xpose consists of 144 Java classes, with a total of 1774 methods. Some of the 144 classes were 
reused with modifications. 

2.1.2 Jwriter 
Jwriter is a component that provides basic word processing capabilities, i.e., text editing, formatting at the word, paragraph 
and document level, definition of styles (groups of formatting elements), support for file formats (RTF, HTML), in-document 
images, automated spell checking, and connectivity to Oracle Databases. Jwriter can be used standalone or integrated in other 
applications that need to provide word processing capabilities. 
Jwriter was developed under Sun JDK 1.1, using Swing and a set of prefabricated toolkits for RTF and HTML data ex-
change, and spell checking support. Jwriter consists of 68 Java classes, with a total of 933 methods. 

2.2 Data Collection Procedures and Measurement Instruments 
For both Xpose and Jwriter the following relevant items were collected:  
• the source code of the systems. 
• data about faults found in the field by customers 
A static analyzer (Jmetrics[1], developed by Oracle Brazil) was developed to extract the values for the object-oriented design 
measures directly from the source code of Xpose and Jwriter.  
One issue that has usually to be dealt with when analyzing design measures and fault data is that systems are being measured 
at a given version and keep evolving. We therefore have to decide what version we measure and what fault data we consider. 
The way to address this issue is context dependent. When building fault-proneness models with Xpose fault data, we will use 
all faults that have been detected after version 1.17. We collected our design measurements on that version and the class in-
terfaces, on which are based the design measures we used, have not changed significantly after that version. When we will 
apply our fault-proneness model to Jwriter, we will apply it to version 0.5 (the first delivered version) and use the fault data 
for that version. We therefore emulate the situation where we would build a model based on the fault history of a system and 
then apply it to a new system that has just been developed. 

2.3 Dependent Variable 
We want to evaluate whether existing OO design measures are useful for predicting the probability that a fault is detected in a 
class during field use. More precisely, the probability of fault detection that is meant here is a conditional probability: the 
                                                        
1 This is subjective and context dependent but, as a ballpark figure, our experience suggests that at least 100 observations (classes) are needed to account for 
the complexity of such fault-proneness models. As discussed below, Jwriter only contains 68 classes.  
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probability that at least one failure occurring in the field is traced back to a fault in a class, depending on the obtained meas-
urement values of the design measures for that class. This should be a good indicator of the class fault-proneness.  

2.4 Independent Variables 
The set of design measures investigated in this study includes a subset of the coupling measures described in [4] [6], a set of 
measures related to polymorphism [2], a subset of the OO measurement suite of Chidamber and Kemerer [9], and some sim-
ple size measures based on counts of the methods and attributes. The Appendix contains a summary of the measures we used, 
as collected by Jmetrics. 
Some of the classes in Xpose and Jwriter contain Java inner classes. These inner classes were not treated as individual obser-
vations (data points) in this study. Instead, in the calculation of our design measures, methods and attributes of inner classes 
were counted to contribute towards the containing class. Accordingly, faults traced back to an inner class were assigned to the 
outmost containing class. Clearly, other strategies to deal with inner classes are possible, e.g., by treating them as individual 
observations and adjusting the measures accordingly. 
This choice entirely depends on how the results prediction models are intended to be used. If we want inner classes to be in-
spection objects that our prediction model can point to, we need to treat them as separate observations. Then, the fault data 
has to be collected at this finer level of granularity. 

3 DATA ANALYSIS METHODOLOGY 
In this section we describe the methodology used to analyze the OO measurement data collected. The analysis procedure 
comprises an analysis of the descriptive statistics, principal component analysis, univariate regression analysis against the 
fault data. The reader is referred [5] to for a detailed description and justification of our analysis procedures. 

3.1 Descriptive statistics 
The distribution and variance of each measure is examined to select those with enough variance for further analysis. Low 
variance measures do not differentiate classes very well and therefore will not be useful predictors in our data set. Further-
more, a comparison of the descriptive statistics between the two systems will help us better interpret the results of our analy-
sis below.  

3.2 Principal component analysis 
If a group of variables in a data set are strongly correlated, these variables are likely to measure the same underlying dimen-
sion (i.e., class property) of the object to be measured. Principal component analysis (PCA) is a standard technique to identify 
the underlying, orthogonal dimensions that explain relations between the variables in the data set. 
Principal components (PCs) are linear combinations of the standardized independent variables. The sum of the square of the 
coefficients in each linear combination is equal to one. PCs are calculated as follows. The first PC is the linear combination 
of all standardized variables that explain a maximum amount of variance in the data set. The second and subsequent PCs are 
linear combinations of all standardized variables, where each new PC is orthogonal to all previously calculated PCs and cap-
tures a maximum variance under these conditions. Usually, only a subset of all variables have large coefficients - also called 
the loading of the variable - and therefore contribute significantly to the variance of each PC. The variables with high load-
ings help identify the dimension the PC is capturing but this usually requires some degree of interpretation. 
In order to identify these variables, and interpret the PCs, we consider the rotated components. This is a technique where the 
PCs are subjected to an orthogonal rotation. As a result, the rotated components show a clearer pattern of loadings, where the 
variables either have a very low or high loading, thus showing either a negligible or a significant impact on the PC. There 
exist several strategies to perform such a rotation. We used the varimax rotation, which is the most frequently used strategy in 
the literature. See [11] for more details on PCA and rotated components. 
 

3.3 Univariate and multivariate regression analysis  
Univariate logistic regression analysis is performed for each individual measure (independent variable) against the dependent 
variable, i.e., no fault/fault detection, in order to determine if the measure is a useful predictor of fault-proneness. 
Next, we build multivariate prediction models using logistic regression.. This analysis is conducted to determine how well we 
can predict the fault-proneness of classes, when the measures are used in combination. The covariates of the models are de-
termined by using a mixed stepwise selection heuristic [13], which aims at identifying a subset of the available measures with 
a high goodness of fit to the data2. We build two types of prediction models 
• Using the OO design measures directly as covariates 

                                                        
2 Other heuristics, such as using principal component analysis to pre-select variables, were tried but did not result in significant differences. 
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• Using the basic functions from MARS as covariates. This combination of Mars and logistic regression is purported to 
yield higher accuracy models, having a more realistic functional form. 

Details about logistic regression and MARS are given in the following sections. 

3.3.1 Logistic regression  
The dependent variable we use to validate the design measures is binary, i.e., was a failure found in acceptance testing traced 
back to a fault in a class? Therefore, we use logistic regression, a standard technique based on maximum likelihood estima-
tion, for the regression analysis. In the following, we give a short introduction to logistic regression, full details can be found 
in [13]. 
A multivariate logistic regression model is based on the following relationship equation (the univariate model is a special 
case of this, where only one independent variable appears): 
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π is the probability that a fault was traced back to a class after a failure during operation, and the Xis are the design measures 
included as independent variables in the model (also called covariates). 
Our dependent variable, π, is a conditional probability: the probability that a fault is found in a class, as a function of the 
class' structural properties. The curve between π and a single Xi – assuming that all other Xjs are constant - takes a flexible S 
shape which ranges between two extreme cases: 
• When Xi is not significant, then the curve approximates a horizontal line, i.e., π does not depend on Xi. 
• When Xi entirely differentiates fault-prone software parts from the ones that are not, then the curve approximates a step 

function. 
Such an S shape is perfectly suitable as long as the relationship between Xis and π is monotonic, an assumption consistent 
with our empirical hypotheses regarding the design measures. Otherwise, higher degree terms have to be introduced in the 
regression equation. 

3.3.2 MARS  
When analyzing and modeling the relationship between fault detection and inspection effort, as well as other potential effec-
tiveness factors mentioned earlier, one of the main issues is that relationships between these variables are expected to be 
complex (non-linear) and to involve interaction effects. Because we currently know little about what to expect and because 
such relationships are also expected to vary from one organization to another, analyzing inspection data in order to under-
stand what affects inspections’ effectiveness is usually a rather complex, exploratory process.  
When using typical regression techniques, the risk to fit the data with models that may be simplistic is rather difficult to 
avoid. For example, we typically resort to log-linear models to handle non-linear relationships. But this comes with a number 
of drawbacks such as forcing the model to have a null intercept or making the analysis of interactions impossible (the whole 
log-linear model is a multiplicative expression). An alternative to model such complex relationships is artificial neural net-
works [8]. However, such models are difficult to interpret [8] as it is nearly impossible to assess the impact of individual in-
dependent variables on the dependent variables and their interactions. Interpretation is key in our context, as the models we 
build are not just used for prediction purposes but are also used to support decision-making and, from a more general per-
spective, gain a better understanding of software engineering processes.  
MARS is a novel statistical method presented in [12] and supported by a recent tool developed by Salford Systems3. At a 
high level, MARS attempts to approximate complex relationships by a series of linear regressions on different intervals of the 
independent variable ranges (i.e., subregions of the independent variable space). It is very flexible as it can adapt any func-
tional form and is thus suitable to exploratory data analysis. One challenge though is to find the appropriate intervals on 
which to run independent linear regressions, for each independent variable, and identify interactions while avoiding overfit-
ting the data. This is the purpose of the search algorithms proposed by the MARS methodology. Though these algorithms are 
complex and out of the scope of this paper, MARS is based on a number of simple principles. They are introduced below in 
order for the reader to understand the results presented in later sections. It is also interesting to note that the results in [8] 
show that for datasets of sizes comparable to what we use in this study, MARS models are more likely to be accurate than 
artificial neural networks. 

                                                        
3 www.salford-systems.com 
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Figure 1 Example Knots in MARS 

Figure 1 illustrates a simple example of how MARS would attempt to fit data, in a two dimension space (where Y and X are 
the dependent and independent variables, respectively), with piece-wise linear regression splines. A key concept is the notion 
of knots, that are the points that mark the end of region of data where a distinct linear regression is run, i.e., where the behav-
ior of the modeled function changes. Figure 1 shows two knots: x1 and x2. They delimit three intervals where different linear 
relationships are identified. MARS search algorithms identify appropriate knots in an automated way, though a number of 
search parameters have to be set by the user. Of course, in a case with higher dimensions and interactions between independ-
ent variables, the search becomes much more complex but the fundamental principles remain the same. The reader is referred 
to [12] for further details.  
In order to model the concept of knots and piece-wise linear regression splines, MARS uses the concept of basis function. 
These are functions of the form:  

max(0, X-c), or 
max(0, c-X) 

where X is an independent variable and c a constant.  
Such basis functions re-express an independent variable X by mapping it to new variables, which are basis functions of the 
form described above. For max(0, X-c), X is set to 0 for all values of X up to some threshold value c and is equal to X for all 
values of X greater than c. By mixing the two types of basis functions presented above and providing adequate values for c, it 
is possible to approximate any functional shape. Determining the right knots (threshold values c) is a key challenge addressed 
by MARS search algorithms. In short, basis functions are used as the new independent variables of our regression estimation 
models. MARS also looks for interaction terms among basis functions, thus leading to the modeling of the interactions 
among independent variables. 
In this paper, we are building a classification model. Our dependent variable is binary. From the short introduction above, it 
is clear that basis functions are identified assuming the dependent variable is continuous. In this context, as recommended in 
[12], we use MARS in two steps: (1) Use the MARS algorithms to identify relevant basis functions, (2) Refit the model with 
logistic regression, using the basis functions as covariates.  

3.4 Model Evaluation 
We evaluate the accuracy of our prediction models in terms of correctness and completeness, two standard measures used for 
classification techniques. The model predicts classes as either fault-prone or not fault-prone. 
Correctness is the number of classes correctly classified as fault-prone, divided by the total number of classes classified as 
fault-prone. Low correctness means that a high percentage of the classes being classified as fault-prone do not actually con-
tain a fault. We want correctness to be high, as inspections of classes that do not contain faults is a waste of resources. 
Completeness is defined as the number of faults in classes classified fault-prone, divided by the total number of faults in the 
system. It is a measure of the percentage of faults that would have been found if we used the prediction model in the stated 
manner. Low completeness indicates that many faults are not detected. These faults would then slip to subsequent develop-
ment phases, where they are more expensive to correct. 
In this study, we perform model evaluation in two different contexts: 
V-cross-validation within Xpose. V-cross-validation [14] is a technique to obtain realistic estimate of the predictive power of 
prediction models, when they are applied to data sets other than those the models were derived from, but no other test data set 
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is available. In short, a V-cross validation divides the dataset into V parts, each part being used to assess a model built on the 
remainder of the dataset. In our study, we will divide our 144 observations dataset into 10 randomly selected parts and per-
form a 10-cross validation. 
Cross-system validation consists of applying the prediction model built from one data set (Xpose) to a different data set 
(Jwriter), and assess the accuracy of these predictions. We use the larger, and therefore more representative data set of Xpose 
as fit data, and Jwriter as test data. 

3.5 Cost-benefit Model 
We need to define a cost-benefit model that helps us determine whether a given fault-proneness model would be economi-
cally viable. We propose a model below that is general, tailorable, and makes a number of assumptions.  
• All classes predicted fault-prone are inspected. 
• Usually, an inspection does not find all faults in a class. We assume an average inspection effectiveness e, 0 ≤ e ≤ 1, 

where e = 1 means that all faults in inspected classes are being detected 
• Faults that are not discovered during inspection (faults that slipped through, faults in classes not inspected) later cause 

costs for isolating and fixing them. The average cost of a fault when not detected during inspection is fc. 
• The cost of inspecting a class is assumed to be proportional to the size of the class. 
• For computing a benefit, we need a baseline of comparison. As a baseline, we assume a simple model that ranks the 

classes by their size, and selects the n largest classes for inspection. The number n is chosen so that the total size the se-
lected classes is roughly the same as the total size of classes selected by fault-proneness model based on design meas-
ures. It is thus ensured that we compare models where the investment – the cost of inspections – are the same or similar.  

For the specification of the model, we need some additional definitions. Let c1,....,cN denote the N classes in the system. For 
i=1,… ,N, let 
• fi be the number of actual faults in class i. 
• pi indicate if class i is predicted fault-prone by the model, i.e., pi=1 if class i is predicted fault-prone, pi=0 otherwise 
• si denote the size of class i (measured in terms of the number of methods, though other measures of size are possible). 
The cost of inspection is ic · si, where ic is the cost of inspection of one size unit. 
Gains and losses are all expressed below in effort units, i.e., the effort saved and the effort incurred assuming inspections are 
performed on code, for example.  
When using a fault-proneness model, the gain and cost of using the model can be expressed as: 
 
Gain (effort saved):   

g_m =defects covered and found  
g_m = e · fc · Σi(fi·pi) 

Cost (effort incurred):  
c_m = direct inspection cost + defects not covered + defects that escape  
c_m =ic·Σi(si·pi) +  fc·Σi(fi·(1-pi)) + (1-e)·fc·Σi(fi·pi) 

In the same way, we express the cost and gains of using the size ranking model to select the n largest classes, so that their 
cumulative size is equal or close to Σi(si·pi), the size of classes selected by the model4. For i=1,..,N, let p’i=1 if class i is 
among those n largest classes, and p’i=0 otherwise: 

g_s =  e · fc · Σi(fi·p’i) 
c_s = ic·Σi(si·p’i) + fc·Σi(fi·(1-p’i))  +  (1-e)·fc·Σi(fi·p’i) 

We now want to assess the difference in cost and gain when using the fault-proneness model and size-ranking model, which 
is our comparison baseline: 

∆gain = g_m – g_s = e · fc · (Σi(fi·pi) - Σi(fi·p’i))  
 ∆cost =  c_m – c_s  = ic·(Σi(si·pi)-Σi(si·p’i))  +  fc(Σi(fi·(1-pi)) - Σi(fi·(1-p’i)))  +   (1-e)·fc(Σi(fi·pi) - Σi(fi·p’i)) 

                                                        
4 We may not be able to get the exact same size, but we should be sufficiently close so that we perform the forthcoming simplifications. This is usually not 
difficult as the size of classes composing a system usually represent a small percentage of the system size. In practice, we can therefore make such an ap-
proximation and find an adequate set of n largest classes.  
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We select n and therefore p’ so that Σi(si·pi)-Σi(si·p’i) ˜ 0 (Inspected classes have roughly equal size in both situations). We 
can thus, as an approximation, drop the first term from the ∆cost equation. This also eliminates the inspection cost ic from the 
equation, and with it the need to make assumptions about the ratio fc to ic for calculating values of ∆cost. With this simplifi-
cation, we have 

∆cost =  fc· (Σi(fi·(1-pi))- Σi(fi·(1-p’i))) + (1-e)·fc· (Σi(fi·pi) - Σi(fi·p’i)) 
By doing the multiplications and adding summands it is easily shown that  

∆cost =  - e · fc · (Σi(fi·pi) - Σi(fi·p’i)) = – ∆gain  
The benefit of using the prediction model to select classes for inspection instead of selecting them according to their size is  

benefit =  ∆gain – ∆cost  
              =  2∆gain  = 2 ⋅ e · fc · (Σi(fi·pi) - Σi(fi·p’i)) 

Thus, the benefit of using the fault-proneness model is proportional to the number of faults it detects above what the size-
based model can find (if inspection effort is about equal to that of the baseline model, as is the case here). The factor 2 is be-
cause the difference between not finding a fault and having to pay fc, and finding a fault and not having to pay fc is 2fc. 
As we will see below, this will allow us, for a given range of e values, to determine the benefits of using a fault-proneness 
model in function of fc, the cost of a defect slipping through inspections. Both e and fc are context-dependent but it will still 
allow us to assess the order of magnitude of the model net benefits, if any.  

4 ANALYSIS RESULTS 
In this section we present the details on our analysis results. We start off with the descriptive statistics of the design measures 
collected for Jwriter and Xpose (Section 4.1). We then perform principal component analysis (Section 4.2), univariate analy-
sis (Section 4.3) and multivariate analysis using logistic regression and MARS to build and evaluate prediction models from 
Xpose data set (Section 4.4). In Section 4.5, we apply the prediction model to Jwriter. 

4.1 Descriptive Statistics 
Table 1 presents the descriptive statistics for the Xpose and Jwriter. Columns “Max”, “75%”, “Med.”, “25%”, “Min.”, 
“Mean” and “Std Dev” state for each measure the maximum value, 75% quartile, median, 25% quartile, minimum, mean 
value, and standard deviation, respectively. For Xpose, the use of inheritance is sparse (low mean values of DIT, NOC −  note 
that in this study the DIT of a root class is 1). This has already been found in many systems before [5][6][9][10]. As a conse-
quence, the polymorphism measures from [2], and the measures counting coupling from/to ancestors/descendents too show 
low means and standard deviations. The measure DCAEC, DCMEC, SPD, and DPD have nonzero values only for very few 
(six or less) classes. We therefore drop these measures from the remainder of the analysis. 
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Turning the discussion to Jwriter, inheritance is even less frequently used there (average DIT is 1.2). Measures DCAEC, 
DCMEC, and SPD do not vary at all in this system. While the number of methods (totmethod, totprivmethod) shows re-
markably similar distributions in both systems, the number of attributes (totattrib, totprivattrib) in Jwriter is about a factor 
three higher than in Xpose (and therefore, aggregation coupling is higher, too). Measures OCMIC and OCMEC have about 
25% lower means in Jwriter than in Xpose. 
To conclude, even though the systems stem from the same development environment, the distributions of the measures vary 
considerably in some cases. This is certainly not an ideal situation for our goal to apply prediction models across systems but 
it may be a realistic one. The differences in distributions may be partly due to the fact that Xpose had a more experienced 
project manager in OO analysis and design, though the development team was the same. In addition, the team was more ex-
perienced when Xpose started, and they used design by contract and enforced much more rigorous programming standards. 
All this may have helped them identify better objects and classes, and devise a better system class diagram. The Java libraries 
used for Jwriter  were not yet mature, requiring work-around solutions to overcome shortcomings of the libraries, i.e., devia-
tions from the originally intended design were necessary. This problem was less severe for Xpose. From a more general 
standpoint, in any organization, practices are likely to evolve over time, as people gain more experience and as key personnel 
changes. So our datasets may reflect realistic conditions under which fault-proneness models have to be used. We will dis-
cuss further the implications in our analysis below. 

4.2 Principal Component Analysis 
Table 2 shows the results from PCA performed on the Xpose data set. We identified six orthogonal dimensions capturing 
76% of the data set variance. For each PC, we provide its eigenvalue, the variance of the data set explained by the PC (in 
percent), and the cumulative variance. Below are the loadings of each measure in each rotated component. Values above 0.7 
are set in boldface, these are the measures we call into play when we interpret the PCs. 
Based on the loadings of the measures in each rotated component, the PCs are interpreted as follows: 
PC1: Class size, in terms of attributes and methods 
PC2: The number of children / descendents of a class 
PC3: Amount of polymorphism taking place 
PC4: Export coupling to other classes 
PC5: Import coupling from ancestor classes  
PC6: OVO 

 Xpose, based on 144 classes  Jwriter, based on 68 classes 
Measure Mean StdDev Max P75 Median  P25 Min Mean StdDev Max P75 Median P25 Min 
SPA 0.215 0.711 5 0 0 0 0 0.265 1.074 8 0 0 0 0 
DPA 1.09 2.975 16 0 0 0 0 1.691 4.016 20 1.5 0 0 0 
SPD 0.076 0.474 5 0 0 0 0 0 0 0 0 0 0 0 
DPD 0.778 6.692 78 0 0 0 0 0.75 3.735 28 0 0 0 0 
SP 0.292 0.835 5 0 0 0 0 0.265 1.074 8 0 0 0 0 
DP 1.868 7.291 78 1 0 0 0 2.441 5.863 30 2.5 0 0 0 
NIP 30.94 37.435 199 44 17 4 0 46.16 40.2 145 63 41.5 11 0 
OVO 2.41 5.354 42 2 0 0 0 1.191 2.728 19 2 0 0 0 
ACAIC 0.153 0.546 4 0 0 0 0 0.044 0.207 1 0 0 0 0 
ACMIC 1.493 3.366 24 2 0 0 0 0.176 0.845 5 0 0 0 0 
DCAEC 0.097 0.805 9 0 0 0 0 0 0 0 0 0 0 0 
DCMEC 0.424 4.299 51 0 0 0 0 0 0 0 0 0 0 0 
OCAIC 1.063 2.083 14 1 0 0 0 3.176 4.538 17 4 1 0 0 
OCAEC 0.806 1.802 14 1 0 0 0 2.735 6.219 38 2 1 0 0 
OCMIC 2.194 3.473 21 3 1 0 0 1.691 2.954 17 2 1 0 0 
OCMEC 2.667 7.737 69 2 0 0 0 2.103 5.172 40 2 1 0 0 
DIT 2.25 1.752 7 3.5 1 1 1 1.235 1.067 4 2 1 0 0 
NOC 0.556 3.083 29 0 0 0 0 0.191 0.629 3 0 0 0 0 
Totatrib 3.285 4.697 24 5 1 0 0 9.279 10.78 41 14 7 0.5 0 
Totprivatrib 2.944 4.696 24 4 0 0 0 6.397 9.709 39 9 1 0 0 
Totprivmethod 2.056 5.081 37 2 0 0 0 2.353 4.367 19 2.5 1 0 0 
Totmethod 12.32 13.864 83 18 7 3 0 13.72 12.12 66 19 9 6 1 

Table 1 Descriptive Statistics for Xpose and Jwriter 
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 PC1 PC2 PC3 PC4 PC5 PC6 
EigenValue: 5.977 2.189 1.515 1.439 1.372 1.213 
Percent: 33.205 12.161 8.415 7.995 7.621 6.738 
CumPercent: 33.205 45.366 53.781 61.776 69.397 76.135 
SPA -0.176 0.062 -0.924 0.037 0.080 0.010 
DPA -0.072 -0.486 -0.156 -0.225 0.516 -0.182 
ACAIC -0.322 0.166 0.085 0.170 0.747 0.224 
ACMIC -0.118 -0.126 -0.202 0.067 0.848 -0.128 
SP -0.223 -0.175 -0.891 0.034 0.071 -0.021 
DP -0.219 -0.922 -0.026 0.083 0.056 -0.028 
NIP -0.712 -0.196 -0.139 -0.091 0.068 0.005 
OCAIC -0.801 0.063 -0.283 0.126 0.013 0.197 
OCAEC 0.048 -0.026 -0.154 0.801 0.025 -0.245 
OCMIC -0.558 -0.578 -0.044 -0.088 -0.004 -0.166 
OCMEC -0.207 -0.191 0.101 0.785 0.081 0.071 
OVO -0.120 0.005 -0.055 0.087 0.085 -0.862 
DIT -0.211 0.120 -0.365 -0.094 0.172 0.456 
NOC -0.110 -0.871 0.016 0.256 -0.014 0.029 
TotAtrib -0.850 -0.243 -0.140 0.163 0.117 0.054 
TotPrivAtrib -0.851 -0.223 -0.153 0.182 0.118 0.057 
TotPrivMeth. -0.736 0.053 0.019 -0.082 0.272 -0.199 
TotMethod -0.730 -0.347 -0.136 0.116 0.191 -0.447 

Table 2 Rotated Components for Xpose data set 

These results do partially confirm earlier findings, that import and export coupling to ancestors/descendents/other classes 
tend to span orthogonal dimensions, and that import coupling measures are somewhat associated with size measures. Note 
that the loadings in PC1 are not as strong as in the other PCs, the correlation between OCAIC and TotAtrib as measured by 
Pearson’s r is 0.7, i.e., the measures explain less than 50 percent of the variation of each other. 

4.3 Univariate Analysis 
The results of the univariate analysis on Xpose are summarized in Table 3. For each measure, the regression coefficient, 
along with its standard error, and the statistical significance (p-value), which is the probability that the coefficient is different 
from zero by are provided (see columns “Coef.”. “S.E.”, “p-val “, respectively). 
As is visible from Table 3, most measures are found to be significantly (at α=0.05) related with fault-proneness5. All regres-
sion coefficients are positive, i.e., the higher coupling, polymorphism, or size of the class, the higher its fault-proneness. This 
is consistent with the general hypotheses associated with these measures [6][2], and confirms results from earlier studies [5] 
[6]. 

                                                        
5 However, this may be due in part to repeated testing that increases the probability to find a significant relationship by chance. Though they are simple tech-
niques to address this problem, e.g., Bonferroni procedure:  divide your significance level (α) by the number tests performed, we use only univariate analysis 
here as a first variable pre-selection stage. As a result, we will not use here any technique to alleviate the problems due to repeated statistical testing. 
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Msr. Coef. S.E. p-val 
SPA 0.719 0.306 0.019 
DPA 0.241 0.075 0.001 
SP 0.624 0.246 0.011 
DP 0.242 0.069 0.000 
NIP 0.042 0.008 0.000 
OVO 0.026 0.033 0.428 
ACAIC 0.625 0.334 0.062 
ACMIC 0.171 0.066 0.010 
OCAIC 0.536 0.142 0.000 
OCAEC 0.147 0.099 0.137 
OCMIC 0.447 0.092 0.000 
OCMEC 0.099 0.041 0.016 
DIT 0.182 0.106 0.086 
NOC 0.740 0.380 0.052 
TotAtrib 0.244 0.054 0.000 
TotPrivAtrib 0.233 0.053 0.000 
TotPrivMeth. 0.183 0.057 0.001 
TotMethod 0.087 0.020 0.000 

Table 3 Univariate Analysis Results for Xpose 

Inheritance measures show a weak trend with fault-proneness (deeper classes and classes with a higher number of children 
are fault-prone). However, these trends are not significant at α=0.05. Also, this result is yet again different from what was 
found in [5], where deeper classes too were more fault-prone, but classes with higher NOC were less fault-prone, and [6], 
where deeper classes were less fault-prone, and NOC not significant at all. As discussed in [6], the impact of inheritance is 
likely to vary according to the inheritance strategy used and the experience of designers.  

4.4 Multivariate Analysis 
In this section we present the multivariate prediction models that were built for the Xpose data set, using a mixed stepwise 
selection procedure [13]. Two models were built, a “linear” model (Section 4.4.1) that uses directly the design measures as 
independent variables, and a MARS model (Section 4.4.2) that uses the MARS basic functions as covariates. 
We also assess the model accuracy using a 10-cross-validation within Xpose. This is done for two purposes: 
• To compare the model accuracy to results from previous studies, which also performed 10-cross-validation within the 

same system. 
• To establish a comparison baseline when the models are then applied to the Jwriter data set in Section 4.5. 

4.4.1 Linear Model 
The multivariate linear model is shown in Table 4. The stepwise variable selection procedure retained an import coupling 
measure (OCMIC), an export coupling measure (OCMEC), and NIP (belonging to the “class size” dimension as described in 
Section 4.2) in the model. This is consistent with previous results [5][6] where class size, import coupling and, to a lesser 
extent, export coupling play a role in fault-proneness. 

Measure Coeff Std. Err P Value 
NIP 0.031 0.009 0.001 
OCMIC 0.216 0.097 0.026 
OCMEC 0.066 0.034 0.055 
Intercept -3.355 0.492 0.000 

Table 4 Linear Model 

The results from performing a 10-cross validation are summarized in Table 5 and Figure 2. In Table 5, Classes with a pre-
dicted probability larger than 0.5 are classified as fault-prone, the others are predicted not fault-prone. The following contin-
gency table shows how predicted and actual faulty classes overlap, and how many faults are contained by faulty classes, 
whether predicted faulty or not. 14 out of the 19 classes that are predicted fault-prone actually do contain a fault (73.6% cor-
rectness), these classes contain 82 out of the 132 faults in the system (62% completeness).   
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While the model is capable of identifying 19 out of 144 classes (i.e., 13% of all classes), which contain over 60% of all faults, 
the fact that we still miss 40% of the faults if we relied on the model prediction may hamper the model’s practicality. We will 
investigate below this issue using the cost-benefit model introduced in Section 3.4. 

  Predicted 
  π<0.5 π>0.5 

Σ 

No fault 108 5 113 
Actual Fault 17 

(50 faults) 
14 
(82 faults) 

31 
(132 faults) 

Σ 125 19 144 
Table 5 Results of 10-Cross Validation of linear model  

The above figures are based on a cutoff value of π=0.5 for the distinction fault-prone/not fault-prone, and the table only gives 
a partial picture, as other cut-off values are possible. Figure 2 shows the correctness and completeness numbers as a function 
of the threshold π.  
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Figure 2 Correctness and completeness - linear model 

4.4.2 MARS Model 
We used the MARS tool to run the MARS algorithms and we obtained the following basis functions:  

BF3 = max(0, OCMIC - .129804E-07)  ~ OCMIC 
BF5 = max(0, 4.000 - DIT ) * BF3 
BF6 = max(0, OCMEC - 1.000) 

After re-running a logistic regression with the basis functions above (using OCMIC for BF3), we obtain the results in Table 
6.  

Measure Coeff Std. Err p-value 
OCMIC 0.947 0.188 < 0.001 
BF5 -0.244 0.064 0.0002 
BF6 0.096 0.055 0.0818 
Intercept 2.867 0.408 < 0.001 

Table 6 Mars Model 

The MARS model is similar to the linear model in the sense that it involves OCMIC and OCMEC, the latter being a weaker 
predictor. The difference is that DIT is selected as opposed to NIP in the linear model. Also, DIT clearly interacts with 
OCMIC. The sign of the coefficient of BF5 suggests that OCMIC has a stronger impact when DIT increases, that is import 
coupling impacts fault-proneness further at deeper levels of inheritance. Though more investigation is required, the com-
pound effect of inherited and imported class elements may generate an even higher complexity in terms of understanding and 
verifying classes. 
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Below is the contingency table that results when we apply the 10-cross validation to the MARS model. 15 of the 22 classes 
predicted fault-prone actually are faulty (68% correctness), these classes contain 97 of the 132 classes (73% completeness). 
The MARS model does not show a strong difference with the linear model in terms of correctness. But in terms of complete-
ness, it performs far better. In other words, it is more accurate for the classes containing larger numbers of faults. Correctness 
and completeness as a function of π are shown in Figure 3. As can be seen, the chosen cutoff value of 0.5 is in fact a good 
tradeoff between correctness and completeness for this model. 

  Predicted 
  π<0.5 π>0.5 

Σ 

No fault 106 7 113 
Actual Fault 16 

(35 faults) 
15 
(97 faults) 

31 
(132 faults) 

Σ 122 22 144 
Table 7 Results of 10-cross validation of MARS model 

Overall, the accuracy of the models presented here is lower than what was found in previous studies [5][6], where models 
achieved over 80% correctness and 90% completeness in 10-cross-validation. One explanation for the worse performance in 
the models here is that the previous studies used a more complete set of design measures. Especially, coupling measures 
based on method invocations were found to be very significant indicators of fault-proneness. These measures were not avail-
able for the present study. 
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Figure 3 Correctness and completeness – MARS model 

4.4.3 Cost/Benefit Analysis for Linear and MARS model 
 
Figure 4 shows the benefit of using the linear and MARS model, respectively, to select classes for inspection over a simple 
size-based selection of classes for inspection, as defined in Section 3.5. This is possibly optimistic as there may be other ways 
to select classes, e.g., based on expert opinion. But we need a quantifiable comparison baseline for the benefit model and, in 
addition, a model-based class selection allows us to take advantage of the previous experience of the development organiza-
tion and making it available to less experienced developers. Moreover, in practice finding the right experts at the right time 
may not be practical and asking them to rank classes may turn out to be a tedious and difficult task to perform. 
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Figure 4 Benefit graph for MARS model (inspection effectiveness e=80%) 
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Figure 5: Fault density of classes selected for inspection for  

Mars, Linear, and size -rank (comparison benchmark) model  

The benefit is shown as a function of the number of classes selected for inspection by the fault-proneness models, which is 
itself dependent on the threshold π (An alternative way to look at this is that we rank the classes by predicted fault-proneness 
and then select a given number of classes based on this ranking). The benefit is expressed in multiples of fc, the cost of a fault 
that goes undetected in inspections, and assumes an inspection effectiveness e of 0.8 (cf. Section 3.5 for how e and fc affect 
the model benefit). In a literature survey of industry data [3], fc typically ranged between 4.5 and 17 person hours, with a 
most likely value of 6 person hours. So we can see that the type of benefits illustrated in Figure 4 can represent substantial 
savings. 
As a general trend, both curves first show a steep rise until they reach their maximum of 44.8fc (linear) and 75.8fc (MARS) at 
around n=28 classes, and then gradually descend until the benefit is back to zero when all classes are selected for inspection. 
As a comparison, for our data set, a hypothetical optimal model that can perfectly rank the classes by the actual number of 
faults they contain reaches its maximum benefit of 118fc at n=31 classes (still assuming the same inspection efficiency 
e=0.8). The linear model only achieves 38% of this theoretical maximum whereas the MARS model with 65% is much 
closer, though there is still room for improvement. 
Figure 5 shows the fault density (number of faults per method) of the classes selected for inspection by the MARS and Linear 
model, as well as the size-rank model, as a function of the number of classes selected. The figure features two horizontal 
axes: the axis at the bottom applies to the curve of the Mars and Linear models, the axis shown at the top of the graph applies 
to the size-rank model. The top axis was chosen so that at any vertical cross section in Figure 5, the size of the classes se-
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lected for inspection by the size-rank model is about the same as those selected by the Mars and Linear model. This is in line 
with the strategy of our cost-benefit model to select the number of classes for the size-rank model, as defined in Section 3.5. 
We thus achieve traceability of the fault density curves with the cost benefit curves Figure 4 – high benefits correspond with 
large discrepancies in fault density with the size-rank model and vice versa. Naturally, the number of classes at the top axis 
grows slower first, as the size-rank model selects bigger and therefore fewer classes, but catches up for higher values of n in 
the rightmost third of Figure 5. 
For n<10, none of the models shows a consistently significant benefit in. The steep benefit rise begins with n=10 classes. 
This is also visible from the fault densities in Figure 5. All three models achieve their peak in fault-density very early (before 
n=5). This is due to an individual class with large absolute number of faults (24) that is found early by all three models – 
hence the models achieve similar fault densities, and the MARS and linear model have no benefit over the size-ranking 
model for small values of n.  
Also worth noticing Figure 5 is that overall the fault densities of the classes selected steadily decrease as n increases. This is 
an encouraging result as we want our models to show such a pattern. However, in the range n ∈  [15 35], the MARS model 
clearly select higher density classes than both the Linear and size-based models. This explains the higher benefits observed  
in Figure 4 and this is an important advantage of the MARS model as the range where it shows clearly superior benefits is the 
range where, in practice, the threshold between inspected and non-inspected classes could very likely be selected (namely, 
the inspection of 10%-25% of all classes). 
The benefit curves for the linear and MARS model (Figure 4) both show a sharp decline immediately following their respec-
tive peaks at about n=28. To explain this observation, recall that the model benefit is expressed relative to the performance of 
the size-ranking benchmark model. At n=30 the size-ranking model selects a (mid-sized) class containing a large number of 
faults (19). At this point, the performance of the benchmark model greatly improves (also visible by the increase in fault-
density for the size-ranking model at n-30 in Figure 5) – hence the relative decrease in the benefit of the MARS and Linear 
model at this value of n. 
Varying the inspection effectiveness e amounts to multiplying the benefit curves by a constant factor. For instance, if we as-
sume an inspection effectiveness only half as high (e=0.4), the peak of the MARS curve will be at 37.9fc.  

4.5 Application of Xpose models to Jwriter 
The straightforward way to apply the models built from Xpose to the Jwriter classes is to calculate the predicted fault-
proneness for each class in Jwriter; if it is above a certain threshold, the class is considered fault-prone and undergoes inspec-
tion, otherwise not. Figure 6 and Figure 7 show the resulting correctness and completeness graphs for the linear and MARS 
model, respectively.  
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Figure 6: Correctness/completeness for linear model a pplied to Jwriter 
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Figure 7: Correctness/completeness for MARS model applied to Jwriter 

A good tradeoff between correctness and completeness can be achieved at the very low cutoff values of 0.22 (linear) and 0.06 
(MARS), at which point we have completeness and correctness values of about 60% for both models. These values are 
slightly lower than what was found for the models in 10-cross-validation. In general, this result suggests that we have to ex-
pect an additional deterioration of the fault-proneness models’ accuracy when they are applied to new systems. Moreover, the 
predicted probabilities cannot be subjected to usual interpretations for the selection of cut-off values for class fault-proneness 
estimation. MARS suggest a reasonable cut-off value at 0.06, which is significantly different from the typical 0.5 threshold. 
However, as investigated below, cross-systems fault-proneness models can still present benefits if they are used in a different 
way. 
The probabilities predicted by the Xpose model for Jwriter classes are very low by usual interpretation standards. Table 8 
shows the distributions of predicted probabilities for the MARS and Linear model, for the 10-cross-validation within Xpose 
(shown in Section 4.4), and when applied to Jwriter. The MARS and Linear model show similar distributions for the 10-
cross-validation within Xpose. When applied to Jwriter (Table 9), the predicted probabilities of the MARS model clearly 
exhibits a lower distribution, though the Linear model has a slightly higher distribution. 
This latter observation is explained by the distributions across the two systems in terms of NIP, inheritance (DIT), and im-
port/export coupling (OCMIC/OCMEC), the predictor variables of our model. For the MARS model, DIT and the coupling 
measures exhibit lower means values in Jwriter than in Xpose (cf. Section 4.1 on descriptive statistics). It can therefore ex-
plain the low predicted probabilities. For the Linear model, NIP shows a much higher distribution in Xpose than in Jwriter, 
hence the higher predicted probabilities. 

 Mean StdDev P75 Median P25 
MARS 0.210 0.259 0.189 0.079 0.061 
Linear 0.211 0.263 0.285 0.086 0.043 

Table 8 Distribution of predicted probabilities (10-cross validation within Xpose) 

 Mean StdDev P75 Median P25 
MARS 0.133 0.214 0.086 0.059 0.054 
Linear 0.257 0.248 0.335 0.190 0.070 

Table 9: Distribution of predicted probabilities (cross-system application to Jwriter) 

Furthermore, the history of these systems can explain the difference between actual and predicted fault frequencies. Jwriter 
was developed first. The team was less experienced with Java, the Java libraries were less mature and contained more bugs, 
and the project manager was different. Even the design strategy (design by contract) and the coding standards were much 
stricter on Xpose. Therefore, relative to its structural properties and for the reasons explained above, Jwriter is much more 
fault-prone, as a system, than Xpose, and the model built from Xpose underestimates the fault-proneness of the Jwriter 
classes.In Xpose, 31 out of 144 classes actually are faulty (21%), in Jwriter, 27 out of 68 classes are faulty (39%). In Xpose, a 
threshold of 0.5 was good enough to classify roughly 20% of all classes as fault-prone. Though in Jwriter a higher percentage 
of classes must be selected to achieve acceptable correctness and completeness values, a lower threshold is required due to 
the shift to lower predicted probabilities. 
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From a more general standpoint, this suggests that, in the common situation where development practices are changing and 
teams are evolving and learning, an absolute, general interpretation of predicted probabilities will not be possible when they 
come from prediction models built on different systems. There are system factors that are likely to come into play, even in 
high maturity development environments. Unfortunately, this hinders us from using a pre-determined cut-off value and pre-
dicted probabilities to classify classes according to their fault-proneness.  
In order to still be able to use and assess the prediction models from Xpose, we apply them in a context where we rank the 
classes of Jwriter by their predicted fault-proneness. Then, we can assume that the N most fault-prone classes will undergo 
specific and thorough inspection. Selecting N can be done based on historical data telling us, for example, what is the typical 
proportion of faulty classes (Note that this proportion may evolve over time), or, since resources for inspections or testing are 
usually constrained, we can choose N based on these available resources. 
We will perform one ranking of the entire Jwriter class set according to their predicted fault-proneness. Based on this rank-
ing, we select the N classes with highest predicted fault-proneness. The question then is: How does the maximum number of 
faults that can be potentially detected increase with N? If the prediction model is useful, we would expect the number of 
faults found to increase sharply in the beginning, and then reach a plateau. 
Figure 8 shows the cumulative number of faults versus class fault-proneness ranking, based on the predictions of the linear 
model for the Jwriter data. The lower straight line is the percentage of faults that we could expect when we randomly rank the 
classes (number of faults is assumed to be proportional to the number of classes). The upper straight line is what the ideal 
model would yield, if we were able to rank the 27 faulty classes, containing one fault each, as the 27 most fault-prone classes. 
We can see in Figure 8 a large hump among the least fault prone classes. This is caused by 7 classes that are unexpectedly 
faulty, according to the linear model. In short, the curve does not have the shape we would expect and this model does not 
work very well. 
Figure 9 shows the graph that results when we rank the classes by predicted fault-proneness of the MARS model. This figure 
fits better our expectations than the linear model in the sense that the curve reaches a plateau after rank 35. There is a very 
small hump towards the end caused by 2 classes having one fault each, but no major abnormality. We can also see that the 
first 15 most fault-prone classes are almost exclusively faulty and close to the optimal line. 
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Figure 8 Cumulative faults versus fault-proneness ranking for linear model 
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Figure 9 Cumulative faults versus fault-proneness ranking for MARS model 

Figure 10 shows the benefit curves for the linear and MARS model, respectively, again assuming inspection effectiveness of 
e=0.8. And again, the general trend is that, both curves first show a rise until they reach their maximum of 14.4fc at n=35 
classes (linear) and 17.6fc at n=31 classes (MARS), respectively, and then gradually descend until the benefit is back to zero 
when all classes are selected for inspection. The models reach their peaks rather late (more than half of the Jwriter classes for 
the linear model), and the maximum benefit values of 17.6fc/14.4fc is lower than for Xpose, too. Note, however, that Jwriter 
is a smaller system, an absolute comparison with the 10-cross validation results in Xpose is not possible. A theoretically op-
timal model that can perfectly rank the classes by the actual number of faults they contain reaches its maximum benefit of 
32fc at n=27 classes (still assuming the same inspection efficiency e=0.8), that is less than twice that of the MARS model. 
The MARS model, however, clearly shows benefits for practically interesting numbers of classes inspected but, as would be 
expected, not on the extreme right of the graph when more than 60 classes are selected for inspections. The MARS model 
benefit curves clearly shows that clear benefits can be obtained in using such a model to select classes to undertake (addi-
tional) inspections or testing. 
We further investigate the performance of the MARS model and try to explain by there are significant benefits in Figure 10. 
The positive benefit of the model would suggest that the detection of faults increases faster than the number of methods in-
spected. We therefore normalize the number of methods and faults by their respective total to express them as a percentage. 
The result is shown in Figure 11, which contains the cumulative number of faults (upper curve) vs. cumulative number of 
methods (lower curve) on the same scatterplot. 
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Figure 10: Benefit Curve of Linear and MARS models  

for Jwriter (inspection effectiveness e=80%) 
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We reach a maximum of 20% difference between the percentages of methods and faults, before starting a plateau. This dem-
onstrates that the ranking is able to identify classes with higher fault-density and explains the benefit results presented earlier. 
Also, the lower curve approximates a linear growth, which indicates that the ranking performed by our model is significantly 
different from the ranking of the classes by their number of methods. 
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Figure 11 Cumulative faults versus number of methods in percent 

Furthermore, when we rank the classes by the number of methods in decreasing order, and look at the cumulative number of 
faults (Figure 12). The curve appears close to the chance line for the 20 predicted most fault-prone classes. In other words, 
with this ranking we only catch as many faults as could be expected by the number of selected classes alone. Thus, the class 
ranking produced by the MARS model built from the Xpose data set is not outperformed by a simple strategy that would be 
immediately applicable within Jwriter based on class size. This further justifies the use of a model such as the one we devel-
oped using the Xpose data. Note that when using the number of data members or attributes as a size measure, results are very 
similar to what we observe for number of methods. 
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Figure 12 Cumulative faults versus size ranking (based on number of methods in the class)  

4.6 Using Fault-proneness Models to Quantify Quality Improvement 
We have seen above that Jwriter was far more fault-prone than what would be expected based on the fault-proneness model 
built using Xpose data. After investigation, as discussed above, our best explanations were learning effects and the differ-
ences in conditions under which the two systems were developed, e.g., practices, management. This is interesting as it shows 
how such fault-proneness models can be used in order to quantify the improvement in quality across systems after factoring 
out the structural properties that make such system difficult to compare. For example, the number of faulty classes or faults 
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can be predicted based on history (completed systems). Then the relative difference between predicted and actual fault counts 
can be used to quantify improvement. 

4.7 Class Ranking and Iterative Development  
Though ranking classes allows us to use the predictions of the Xpose model in Jwriter, there are practical implications if this 
strategy is to be applied on projects. In order to perform such a ranking, we must first have all classes available for measure-
ment. Object-oriented development, however, is typically iterative. To rank the classes by fault-proneness, we would have to 
hold inspections until the last iteration, when all classes are fully implemented and ready to be measured. In an iterative de-
velopment, we could rank the classes within each new iteration and select a certain percentage of the classes with highest 
ranks in that iteration for inspection. However, we may have iterations with relatively many high-risk classes, then we would 
select too few classes for inspection. For iterations with few high-risk components, too many classes would be selected for 
inspection. So we would expect a higher misclassification rate this way, than when we select classes for inspections based on 
one ranking of the entire data set. This effect should be stronger, the smaller the iterations are.  

5 CONCLUSIONS 
One of the main objectives of this paper is to assess whether fault-proneness models, based on design measurement, are ap-
plicable and can be viable decision making tools when applied from one object-oriented system to the other, in a given envi-
ronment. This question is of high practical interest as it determines whether such models are worth investigating. But little is 
currently known on the subject. In this paper we apply a fault-proneness model built on one system to another system. These 
two systems have been developed with a nearly identical development team (a different project manager), using a similar 
technology (OO Analysis and design and Java) but different design strategies and coding standards. We believe that the con-
text of our study represents realistic conditions that are often encountered: change in personnel, learning effects, evolution of 
technology. In this context, we want to assess whether an organization can build viable models to focus verification and vali-
dation on fault-prone parts of systems. 
Our results suggest that applying the models across systems is far from straightforward. Even though the systems stem from 
the same development environment, the distributions of measures change and, more importantly, system factors (e.g., experi-
ence, design method) affect the applicability of fault detection predicted probabilities. It can be argued that, in a more homo-
geneous environment, this effect might not be as strongly present as in the current study. But we doubt whether such envi-
ronments exist or are in any case representative. It is likely, however, that the more stable the development practices and the 
better trained the developers, the more stable the fault-proneness models.  
We then use the prediction model to rank classes of the second system according to their predicted fault-proneness (using the 
model built on the first system). When used in this manner, the model can in fact be helpful at focusing verification effort on 
faulty classes. Though predicted defect detection probabilities are clearly not realistic based on actual fault data, the fault-
proneness class ranking is accurate. The model performs clearly better than chance and also outperforms a simple model 
based on class size, e.g., number of methods. 
Another objective of the paper is to apply a novel exploratory analysis technique (Multivariate Adaptive Regression Splines: 
MARS) to the construction of fault-proneness models. Because we know little about what functional form to expect, such 
exploratory techniques that help finding optimal model specifications may be very useful. Our results support that and sug-
gest that the model generated by MARS outperforms a logistic regression model where the relationship between the logit and 
the independent variables is linear (log-linear model).  
A third contribution of the paper is that we propose and apply a specific cost-benefit model for fault-proneness models. The 
goal is to assess the economic viability of such fault-proneness models as a function of a number of factors, e.g., defect detec-
tion effectiveness. Results suggest that, under realistic assumptions, fault-proneness models can provide substantial benefits, 
even when used across systems.  
Future research needs to focus on collecting larger datasets, involving large numbers of systems from a same environment. It 
is crucial, in order to make the research on fault-prone models of practical relevance, that they be usable from project to pro-
ject. Their applicability depends on their capability to predict accurately and precisely (fine grain predictions) where faults lie 
in new systems, based on the development experience accumulated on past systems.  
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APPENDIX: DEFINITION OF DESIGN MEASURES  
In the following table we provide short definitions of all measures used in the paper. For detailed definitions, references to 
the source of each measure are provided.  
 

Name Definition 
spa [2] Static polymorphism in ancestors 
dpa [2] Dynamic polymorphism in ancestors 
spd [2] Static polymorphism in descendants 
dpd [2] Dynamic polymorphism in descendants 
sp [2] Static polymorphism in inheritance relations. sp=spa+spd 
dp [2] Dynamic polymorphism in inheritance relations. dp=spa+spd 
nip [2] Polymorphism in non-inheritance relations. 
ovo [2] Overloading in stand-alone classes 
acaic [4] 
acmic [4] 
dcaec [4] 
dcmec [4] 
ocaic [4] 
ocaec [4] 
ocmic [4] 
ocmec [4] 

These coupling measures are counts of interactions between classes. The measures distinguish the relationship between classes 
(inheritance or not), different types of interactions, and the locus of impact of the interaction. 
The acronyms for the measures indicates what interactions are counted: 
• The first letter indicates the relationship (A: coupling to ancestor classes, D: Descendents, O: Others, i.e., no inheritance 

relationships). 
• The next two letters indicate the type of interaction: 

• CA: Class-Attribute interactions between classes c and d: c has an attribute of type d. 
• CM: Class-Method interactions between classes c and d: c has a method with a parameter of type class d. 
• The last two letters indicate the locus of impact: IC for import coupling, EC for export coupling. 

dit [9] The depth of the class in the inheritance tree. Root classes have a DIT of 1 in this paper. 
noc [9] The number of children of a class. 
totatrib The total number of attributes in the class 
totprivatrib The number of private attributes in the class  
totprivmethod The number of private methods in the class 
totmethod The total number of methods in  the class 

Table 10: Definitions of measures  


