
SDMetrics
User Manual

V2.5

May 2, 2021

SDMetrics ® User Manual www.sdmetrics.com

For product support and latest product news and updates, visit www.sdmetrics.com

e-mail: info@sdmetrics.com

Jürgen Wüst
In der Lache 17
67308 Zellertal
Germany

All rights reserved. No part of this manual may be reproduced, in any form or by any means, without permission in writing from the author.

Oracle, Java, and OpenJDK are registered trademarks of Oracle and/or its affiliates. Linux is a trademark of Linus Torvalds. UNIX is a registered
trademark of X/Open Company Limited. Windows, Excel are registered trademarks of Microsoft, Inc. MOF, UML and XMI are either registered
trademarks or trademarks of the Object Management Group, Inc. MagicDraw is a trademark or registered trademark of No Magic, Inc. XML is a
trademark of the World-Wide Web Consortium. SDMetrics is a registered trademark of Jürgen Wüst. All other product names and company names
mentioned herein are the property of their respective owners.

© 2002-2021. All rights reserved. ii

http://www.sdmetrics.com/

SDMetrics ® User Manual www.sdmetrics.com

Table of Contents

1 Introduction...1
2 Installation...2

2.1 System Requirements..2
2.2 Quick Installation and Start...2
2.3 Installing SDMetrics..2

2.3.1 Single User Installation..2
2.3.2 Multiple Users Installation...3

2.4 Updating SDMetrics from an Older Version...3
2.5 Invoking SDMetrics...4
2.6 Uninstalling SDMetrics...4

3 Getting Started...5
4 The SDMetrics User Interface...9

4.1 Getting Help...9
4.2 Specifying Project Settings..9

4.2.1 Specifying Project Files...9
4.2.2 Specifying Filters...12
4.2.3 Saving Project Settings..14
4.2.4 Loading Project Settings..14

4.3 Calculating and Viewing Metric Data...14
4.3.1 Common controls in views..15

4.4 The View 'Metric Data Tables'..17
4.4.1 Highlighting Outliers...18

4.5 The View 'Histograms'...18
4.6 The View 'Kiviat Diagrams'...20
4.7 The View 'Rule Checker'...21

4.7.1 Filtering Design Rules...23
4.7.2 Accepting Design Rule Violations...24

4.8 The View 'Descriptive Statistics'...25
4.9 The View 'Design Comparison'...26

4.9.1 Calculating and Viewing Metric Deltas...27
4.9.2 Metric Deltas Table..27
4.9.3 Comparative Descriptive Statistics Table..28
4.9.4 Mapping Design Elements...29
4.9.5 Exporting Metric Deltas...30

4.10 The View 'Relation Matrices'...30
4.11 The View 'Graph Structures'..32

4.11.1 Viewing Cycles..32
4.11.2 Viewing Connected Components...33

4.12 The View 'Model'...34
4.13 The View 'Catalog'...35
4.14 The View 'Log'...36
4.15 Exporting Data...37

4.15.1 Exporting Data Tables..37
4.15.2 Exporting Graphs...39

4.16 Setting Preferences...40

© 2002-2021. All rights reserved. iii

SDMetrics ® User Manual www.sdmetrics.com

4.16.1 Project File Sets...40
4.16.2 Percentiles..44
4.16.3 Output...45
4.16.4 Appearance...46
4.16.5 Behavior...47

5 Running SDMetrics from the Command Line..49
6 Design Measurement...53

6.1 Design Metrics and System Quality..53
6.2 Structural Design Properties..54

6.2.1 Size...54
6.2.2 Coupling...55
6.2.3 Inheritance..56
6.2.4 Complexity...57
6.2.5 Cohesion...57

6.3 Data Analysis Techniques..58
6.3.1 Descriptive Statistics..59
6.3.2 Dimensional Analysis..59
6.3.3 Rankings...60
6.3.4 Quality Benchmarks...60
6.3.5 Prediction Models..61

7 SDMetrics Metamodel and XMI Transformation Files..64
7.1 SDMetrics Metamodel...65
7.2 XMI Transformation Files...67

7.2.1 XMI Transformation File Format..67
7.2.2 XMI Transformations and Triggers...68
7.2.3 Tips on Writing XMI Transformations..74

8 Defining Custom Design Metrics and Rules...79
8.1 Definition of Metrics...80

8.1.1 Projection...80
8.1.2 Compound Metrics...90
8.1.3 Attribute Value...91
8.1.4 Nesting...92
8.1.5 Signature..93
8.1.6 Connected Components...94
8.1.7 Value Filter...94
8.1.8 Subelements...95
8.1.9 Substring..96

8.2 Definition of Sets...98
8.2.1 Projection...99
8.2.2 Subelements...101

8.3 Definition of Design Rules..102
8.3.1 Violation...103
8.3.2 Cycle..104
8.3.3 Projection for Rules..104
8.3.4 Valueset for Rules..105
8.3.5 Word lists...106
8.3.6 Exempting Approved Rule Violations...107

8.4 Definition of Relation Matrices...107
8.5 Expression Terms..110

8.5.1 Constants and Identifiers..110

© 2002-2021. All rights reserved. iv

SDMetrics ® User Manual www.sdmetrics.com

8.5.2 Metric Expressions...111
8.5.3 Set Expressions..114
8.5.4 Condition Expressions...115
8.5.5 Expression Terms and XML..116

8.6 Writing Descriptions..117
8.7 Defining Metrics for Profiles...119

8.7.1 Profiles in UML 2..119
8.7.2 Profiles in SDMetrics...119
8.7.3 XMI Serialization of Profile Extensions..120
8.7.4 Profile Extensions with Regular Model Elements...121
8.7.5 Extension References without Inheritance...121
8.7.6 Extension References with Inheritance..124
8.7.7 Tips on Creating Metrics and Rules for Profile Extensions...125

9 Extending the Metrics and Rule Engine..128
9.1 Metric Procedures..128

9.1.1 Conception of a New Metric Procedure...128
9.1.2 Implementation of the Metric Procedure...129
9.1.3 Using the New Metric Procedure...131

9.2 Set Procedures..132
9.3 Rule Procedures...133
9.4 Boolean Functions...136

9.4.1 Conception of a New Boolean Function..136
9.4.2 Implementation of the Boolean Function...137
9.4.3 Using the New Boolean Function..138

9.5 Scalar Functions...138
9.6 Set Functions..140
9.7 Metrics Engine Extension Guidelines..142

A: Metamodels...144
A.1 Metamodel for UML 1.3/1.4...144
A.2 Metamodel for UML 2.x...147

B: List of Design Metrics...155
B.1 Class Metrics...155
B.2 Interface Metrics...161
B.3 Package Metrics..162
B.4 Interaction Metrics..167
B.5 Usecase Metrics...168
B.6 Statemachine Metrics..169
B.7 Activity Metrics..170
B.8 Component Metrics...172
B.9 Node Metrics...174
B.10 Diagram Metrics..175

C: List of Design Rules..177
C.1 Class Rules..177
C.2 Interface Rules...181
C.3 Datatype Rules..182
C.4 Property Rules...183
C.5 Operation Rules...184
C.6 Parameter Rules..186
C.7 Package Rules...187
C.8 Association Rules..189

© 2002-2021. All rights reserved. v

SDMetrics ® User Manual www.sdmetrics.com

C.9 Associationclass Rules..190
C.10 Generalization Rules...190
C.11 Interfacerealization Rules..191
C.12 Dependency Rules...192
C.13 Interaction Rules...192
C.14 Actor Rules..192
C.15 Usecase Rules..193
C.16 Statemachine Rules...195
C.17 Region Rules...196
C.18 State Rules...198
C.19 Activitygroup Rules..203
C.20 Action Rules..203
C.21 Controlnode Rules...204
C.22 Objectnode Rules..206
C.23 Pin Rules...207
C.24 Controlflow Rules...208
C.25 Objectflow Rules...208

D: List of Matrices..209
E: Project File Format Definitions...210
F: Glossary..217
G: References...219

© 2002-2021. All rights reserved. vi

SDMetrics ® User Manual 1 Introduction

1 Introduction
Welcome to SDMetrics, the quality measurement tool for UML™ designs. This manual will get
you up and running with SDMetrics, and introduce you to the basic and advanced features
SDMetrics has to offer.

Part I of this manual addresses all users of SDMetrics. Part II addresses power users who want to
define metrics or design rules of their own, and/or adapt SDMetrics to a specific XMI® exporter.

Part I - Basic SDMetrics Usage
Section 2 "Installation" describes the installation of SDMetrics.

Section 3 "Getting Started" is a brief guided tour of SDMetrics, taking you through the
steps to calculate a set of metrics for your UML designs.

Section 4 "The SDMetrics User
Interface"

describes all features of the SDMetrics user interface in detail.

Section 5 "Running SDMetrics
from the Command Line"

shows how SDMetrics can be run from a command line.

Section 6 "Design Measurement" discusses general design measurement principles and provides
guidelines how to interpret measurement data.

Part II - Advanced SDMetrics Features

Section 7 "SDMetrics Metamodel
and XMI Transformation Files"

explains how to define the UML metamodels used by
SDMetrics, and how SDMetrics extracts UML design
information from XMI files.

Section 8 "Defining Custom
Design Metrics and Rules"

shows how metrics and design rules are defined in SDMetrics,
and how you can define your own UML design metrics and
rules.

Section 9 "Extending the Metrics
and Rule Engine"

describes how to extend the calculation capabilities of the
metrics engine itself.

Part III - Appendices
Appendix A: "Metamodels" shows SDMetrics' metamodels for UML1.x and UML2.x.
Appendix B: "List of Design
Metrics"

lists the design metrics that ship with SDMetrics.

Appendix C: "List of Design
Rules"

lists the design rules that ship with SDMetrics.

Appendix D: "List of Matrices" lists the relation matrices that ship with SDMetrics.
Appendix E: "Project File Format
Definitions"

is a reference to the metamodel, metric definition, and XMI
transformation file formats.

© 2002-2021. All rights reserved. 1

SDMetrics ® User Manual 2 Installation

2 Installation

2.1 System Requirements

SDMetrics runs on platforms supporting a Java™ 8 or better runtime environment (JRE). Memory
usage depends on the size of the models analyzed and typically ranges from 40MB for small
systems (a few hundred model elements) to 500MB-1GB for large systems (several hundred
thousand model elements). Disk space required for the installation is less than 10MB (not counting
the JRE). Typically, the hardware that runs your UML modeling tools will also be sufficient to run
SDMetrics.

If you do not already have a JRE installed on your machine, obtain a JRE of your choice for Java 8
or higher (for example, the AdoptOpenJDK with Hotspot JVM from https://adoptopenjdk.net) and
follow the installation instructions provided with your JRE distribution.

2.2 Quick Installation and Start

• Unpack the compressed archive (zip file) you received or downloaded to a folder of your
choice.

• Make sure you have read and agreed with the license agreement License.txt before
using SDMetrics.

• To start SDMetrics, double-click the file SDMetrics.jar, or invoke the script
SDMetrics.bat (Windows platforms) or SDMetrics.sh (Unix/Linux platforms).

For installation on other platforms, and further installation options, see the following sections.

2.3 Installing SDMetrics

2.3.1 Single User Installation

Installing SDMetrics is easy. The installation will not affect your system configuration in any way.
You do not require administrative rights on your system for the installation.

To install SDMetrics, simply unpack the compressed archive (zip file) you received or downloaded
to a folder of your choice. Among others, you should find these artifacts in the folder:

© 2002-2021. All rights reserved. 2

SDMetrics ® User Manual 2.3 Installing SDMetrics

File/folder name Purpose
SDMetrics.jar The SDMetrics program files.
sdmetrics.bat Script to start SDMetrics on Windows platforms.
sdmetrics.sh Script to start SDMetrics on Unix/Linux platforms.
Readme.html Latest program version information.
License.txt The SDMetrics end user license agreement.

SDMetricsUserManual.html Opens the SDMetrics User Manual in your web
browser.

manual/ Contains the SDMetrics User Manual files.
bin/ Any extensions your create for SDMetrics go in here.

Make sure you have read and agreed with the license agreement before using SDMetrics.

2.3.2 Multiple Users Installation

To roll out SDMetrics for a larger number of users, the system administrator may choose to deploy
SDMetrics on a network or multi-user system (network drive, terminal servers, etc).

• A single installation copy can be used by more than one user at a time.
• The installation directory can (and should) be read-only for users, as SDMetrics does not

write to its installation directory at runtime.

Alternatively, you can also perform separate installations at each local client, or use a mixed
approach of local and central installations.

2.4 Updating SDMetrics from an Older Version

If you have previously installed an older version of SDMetrics that you no longer wish to use,
simply replace the old installation directory with the new version.

If you choose to use the old and new version of SDMetrics in parallel, put the new version in a new
installation directory of its own.

In either case, your application preferences will automatically be taken over from the old version,
with two exceptions:

• The default project file sets (see Section 4.16.1 "Project File Sets") will always be restored
to factory settings for the new version. If you have changed the metamodel/metric
definition/XMI transformation files for the default project file sets, you need to register them
again with the new version of SDMetrics.

• SDMetrics will look for the user manual in its default location (see Section 4.16.5
"Behavior").

© 2002-2021. All rights reserved. 3

SDMetrics ® User Manual 2.5 Invoking SDMetrics

2.5 Invoking SDMetrics

Navigate to the SDMetrics installation directory and double-click file SDMetrics.jar to launch
SDMetrics. If this does not work on your system, invoke SDMetrics with the script
SDMetrics.bat (for Microsoft Windows platforms) or SDMetrics.sh (for Unix/Linux
platforms).

On a command line prompt, start SDMetrics with the command:

java -jar "/path/to/SDMetrics.jar"

The name of the Java class to launch SDMetrics is com.sdmetrics.SDMetrics, so the
following command will also start SDMetrics:

java -classpath "/path/to/SDMetrics.jar" com.sdmetrics.SDMetrics

2.6 Uninstalling SDMetrics

1. SDMetrics stores the user's preferences in a file .SDMetricsXYZ.props in the user's
home directory. XYZ indicates the program version. You can find the precise location of the
user preferences file in the "About" dialog (select "Help -> About"). Quit SDMetrics and
delete this file.

2. Delete the SDMetrics installation directory you created during the installation, and all of its
contents.

This completely removes SDMetrics from your system.

© 2002-2021. All rights reserved. 4

SDMetrics ® User Manual 3 Getting Started

3 Getting Started
The following guided tour takes you through the steps to calculate a set of metrics for your UML
design. Let's assume you have exported a UML design you want to analyze as an XMI file from
your UML design tool. Refer to the manual of your UML modeling tool how to accomplish this.
Start SDMetrics as described in Section 2 "Installation", and you are presented with the SDMetrics
main window.

Figure 1: SDMetrics main window

Calculating a set of metrics takes four steps:

1. Specify the XMI file with your UML design
2. Calculate the metrics
3. Explore the metric data
4. Export the metric data for further processing

© 2002-2021. All rights reserved. 5

SDMetrics ® User Manual 3 Getting Started

Step 1: Specify the XMI file to read

Click the button or select "Project -> Edit Project Settings" from the menu bar.

Figure 2: Project File Settings Dialog

You specify the XMI file to read in the "XMI Source File" box at the top of the project settings
dialog. Click the topmost "Browse..." button and use the file chooser dialog to select your XMI file.

At this point, you don't need to worry about the remaining options in the Project File Settings
dialog; leave everything at "Automatic" and "use default", and click the "OK" button to confirm
your selection.

Step 2: Calculate the metrics

After you specified your project files, select "Project->Calculate Metrics" from the menu bar, or
click the button on the tool bar. SDMetrics will read your XMI design file and calculate the
metrics. This is a fully automated process that usually takes a few seconds. You can monitor its
progress on the status bar.

© 2002-2021. All rights reserved. 6

SDMetrics ® User Manual 3 Getting Started

Figure 3: Table view of calculated metrics

Step 3: Explore the metric data

To explore the metric data, SDMetrics provides several views of the data, for instance:

• Metric data tables
Presents a tabular view of all metric data. Select the type of elements (packages, classes, etc)
you want to see from the dropdown list in the upper tool bar of the view. You can sort the
table according to metric values, and highlight outliers (model elements with relatively high
metric values).

• Histograms
In this view you can browse histograms and cumulative distribution charts for the metrics.
The view also displays descriptive statistics such as mean/minimum/maximum values and
percentiles for one metric at a time.

• Kiviat Diagrams
This view shows Kiviat diagrams for the model elements. The diagrams provide a summary
of all metric values for one design element at a time.

Open these views and more from the "Views" menu in the menu bar.

© 2002-2021. All rights reserved. 7

SDMetrics ® User Manual 3 Getting Started

Step 4: Export the metrics data for further processing

You can export the metric data tables for further processing with your favorite spreadsheet software
or statistical software packages. Go back to the "Metric Data Tables" view and click the button
on the upper right corner of the view. This opens the data export dialog window.

Figure 4: Data Export Dialog

Here you can specify whether to write the data tables to one or several output files, and select the
file format for the output files (tab-separated text, HTML, etc).

This completes the brief guided tour of some of SDMetrics' most important features. The following
section describes these and all other features of SDMetrics in detail.

© 2002-2021. All rights reserved. 8

SDMetrics ® User Manual 4 The SDMetrics User Interface

4 The SDMetrics User Interface
This section describes how to use SDMetrics via its interactive graphical user interface. For batch
processing see Section 5 "Running SDMetrics from the Command Line".

4.1 Getting Help

All views and dialogs of SDMetrics contain help buttons () that will show the relevant part of the
user manual in a web browser. Or select "Help -> User Manual Table of Contents" from the menu
bar, or press the F1 key at any time. If you have problems opening the manual from within
SDMetrics, see Section 4.16.5 "Behavior".

4.2 Specifying Project Settings

4.2.1 Specifying Project Files

4.2.1.1 Overview of Project Files

To control the way SDMetrics processes your UML designs, SDMetrics requires a set of project
files, such as the file containing the definition of the metrics to be calculated. Figure 5 illustrates the
role of the project files:

© 2002-2021. All rights reserved. 9

SDMetrics ® User Manual 4.2 Specifying Project Settings

Figure 5: SDMetrics Project Files

• XMI Source File
The XMI file that stores the UML design you want to analyze. You create this XMI file with
your UML modeling tool or some other application that exports XMI files.

• Metamodel Definition File
The SDMetrics metamodel (see Section 7.1 "SDMetrics Metamodel") defines which UML
elements SDMetrics knows about. The metamodel provides the basis for the definition of the
metrics to be calculated.

• XMI Transformations File
The XMI transformations file (see Section 7.2 "XMI Transformation Files") defines how the
model elements in the SDMetrics metamodel are retrieved from the XMI source file.

• Metrics Definition File
The metrics definition file (see Section 8 "Defining Custom Design Metrics and Rules")
defines the set of metrics to be calculated for your UML design.

4.2.1.2 The Project File Settings Dialog

To edit the project file settings, select "Project -> Edit Project Settings" from the menu bar, or click
the button in the tool bar. Select the "File Settings" tab.

© 2002-2021. All rights reserved. 10

UML
 Modeling

Tool

SDMetrics

XMI Source File

Metric Data
Output

XMI Trans-
formation File

Metamodel
Definition File

Metrics
Definition File

Document

ApplicationLegend:

produce/consume

refers to

SDMetrics ® User Manual 4.2 Specifying Project Settings

Figure 6: Project File Settings Dialog

On the file settings dialog, you specify the project files to use. From top to bottom:

XMI Source File
To specify the XMI source file,

• enter the name of the XMI file with your UML design in the text field,
• or click the arrow down button next to the text field to pick a file from a list of recently used

XMI source files,
• or click the "Browse..." button next to the text field; this opens a standard file chooser dialog

where you can navigate the file system to select the file,
• or if your system supports file drag and drop, you can drop the XMI file anywhere into the

main window or the project file settings dialog.

Select Project File Set
SDMetrics ships with several default project file sets. Each project file set includes a consistent
combination of one metamodel definition file, one XMI transformation file, and one metric
definition file:

Name Description
Default UML 1.x and XMI 1.0 XMI 1.0 import and metrics for UML 1.x models
Default UML 1.x and XMI 1.1-
1.3

XMI 1.1/1.2/1.3 import and metrics for UML 1.x
models

Default UML 2.x and XMI 2.x XMI 2.x import and metrics for UML 2.x models
Table 1: Default project file sets

When you select the radio button "Automatic", SDMetrics will automatically determine the most
suitable project file set based on the XMI version and exporter of the XMI source file at hand.
When you select the radio button "Custom", SDMetrics will always use the project file set selected

© 2002-2021. All rights reserved. 11

SDMetrics ® User Manual 4.2 Specifying Project Settings

from the dropdown list. This feature is useful when you have created your own project file sets (see
Section 4.16.1 "Project File Sets"), or if SDMetrics has problems determining the XMI version of
your XMI source file, or if SDMetrics cannot match the XMI version to one of the available project
file sets.

Most of the time, you will want to use a project file set "as is". You can, however, replace any or all
files of the project file set with modified or custom project files of your own, e.g., to calculate a
different set of design metrics.

Override XMI Transformations File
If you do not wish to use the XMI transformation file of the applicable project file set, you can
specify an alternative XMI transformation file to use here. Select the "from file" radio button, and
specify your transformation file in the text field next to it (using the browse button, the list of
previously used XMI transformations, or drag and drop the file into the dialog).
See Section 7.2 "XMI Transformation Files" for more information on how to create your own XMI
transformation files.

Override Metamodel Definition File
To use a modified or custom metamodel of your own, select the "from file" radio button, and
specify your metamodel definition file in the text field next to it (using any of the means described
above).
See Section 7.1 "SDMetrics Metamodel" for more information on how to create your own
metamodel definitions.

Metrics Definition File
To use a metrics definition file of your own, select the "from file" radio button, and specify your
metrics definition file in the text field next to it (using any of the means described above).
See Section 8 "Defining Custom Design Metrics and Rules" for more information on how to create
your own metrics definition files.

4.2.2 Specifying Filters

Your XMI files may contain design elements representing APIs of standard libraries or 3rd party
components. In most cases, you do not want to calculate design metrics for such elements. With
filters, you can instruct SDMetrics to ignore such design elements.

4.2.2.1 Qualified Element Names

SDMetrics' filtering mechanism is based on the fully qualified names of design elements. For
example, if your design model is called "BankingApplication", the fully qualified name of a class
"Account" in a top-level package "businesslogic" is:
BankingApplication.businesslogic.Account
If class "Account" has a method "deposit" with a parameter "amount", the fully qualified name of
parameter "amount" is:
BankingApplication.businesslogic.Account.deposit.amount

© 2002-2021. All rights reserved. 12

SDMetrics ® User Manual 4.2 Specifying Project Settings

The fully qualified name of a model element is the name of element, prepended by the fully
qualified name of element's owner and a period. Note that SDMetrics element filters use the period
as namespace separator, not the double colon (::) of the UML.

4.2.2.2 Specifying Filters

Filters are specified based on fully qualified element names. You define filters to match one or more
parts of the beginning of fully qualified names. For example, a filter
BankingApplication.businesslogic matches the above mentioned package
"businesslogic" and all elements it contains.

The # character serves as wildcard that matches any name. For instance, the filter #.org.xml
matches the package org.xml and all elements contained within, regardless of the design model
name.

4.2.2.3 Filter Dialog

To open the filter dialog, select "Project -> Edit Project Settings" from the main menu, or click the
 button on the tool bar. Select the "Filter Settings" tab.

Figure 7: Filter Settings Dialog

The right hand side of the window shows the current list of filters. To add a new filter to the list,
enter the filter string in the text field on the left side and click the "Add" button (or press the enter or
return key). Click the "Replace" button to replace the currently selected filter on the list with the
contents of the text field. The "Delete" button removes the currently selected filter on the list.

The meaning of the radio buttons and checkboxes is as follows:

• "Reject matching elements" - if this option is selected, all elements that match at least one of
the filters will be rejected.

• "Reject non-matching elements" - if this option is selected, all elements that match none of
the filters will be rejected. This is useful if, for instance, you are only interested in elements
of one or two specific packages.

© 2002-2021. All rights reserved. 13

SDMetrics ® User Manual 4.2 Specifying Project Settings

• "Don't show rejected elements in output" - if the option is selected, the rejected elements do
not appear in any data output (GUI displays and exported data files). Deselecting this option
disables the filter mechanism.

• "Ignore rejected elements for metrics calculation" - this option determines the treatment of
links from or to rejected elements. Accepted elements can have all kinds of relationships
(associations, inheritance relationships etc.) with rejected elements. Whether to count such
relationships or not affects for example coupling and inheritance metrics for the accepted
elements.
By default, this option is deselected. Links to rejected elements are counted; the
measurement values you obtain for the accepted elements are the same as when the filter
mechanism is disabled.
If this option is selected, links to rejected elements are ignored during metric calculation or
rule checking. The measurement values you obtain will usually be lower than without filters.

To apply the modified filter settings, you need to re-calculate the design metrics by clicking the
button on the tool bar.

4.2.3 Saving Project Settings

You can save the current project file and filter settings to a configuration file for later retrieval. This
is also convenient if you intend to invoke SDMetrics via the command line (see Section 5 "Running
SDMetrics from the Command Line"): you can instruct SDMetrics to read the file and filter settings
from a configuration file instead of having to specify each file and filter individually as command
line arguments.

To save the current project settings, select "Project -> Save Project Settings" from the main menu.
This opens a standard file chooser dialog where you can specify the configuration file to write the
settings to.

4.2.4 Loading Project Settings

To load a project settings configuration, select "Project -> Load Project Settings" from the main
menu. This opens a standard file chooser dialog where you can specify the configuration file to read
the file and filter settings from.

4.3 Calculating and Viewing Metric Data

After you specified your project file and filter settings (see Section 4.2 "Specifying Project
Settings"), select "Project->Calculate Metrics" from the menu bar, or click the button on the tool
bar. SDMetrics will read your UML design file and calculate the metrics as specified. This is a fully
automated process that usually takes a few seconds. You can monitor the calculation progress on the
status bar.

If an error occurs during data processing (e.g., a file was not found, metric calculation failed due to
a semantic error in a custom metric definition file), the calculation will abort and you are prompted

© 2002-2021. All rights reserved. 14

SDMetrics ® User Manual 4.3 Calculating and Viewing Metric Data

with a description and location of the error. After you fixed the error (e.g., specified the correct
project file, corrected the metric definition file), press the button again to restart the calculation.

Upon successful completion, you can explore the metric data in the main window. SDMetrics
provides several views:

View name Description
Metric Data Tables Presents metric data as a set of tables
Histograms Displays histograms for the metrics
Kiviat Diagrams Displays Kiviat diagrams for the model elements
Rule Checker Shows design rule violations for the UML model
Design Comparison Compares metric values to those of a second UML model
Relation Matrices Shows relations such as "class uses class", "actor associated with use case"
Descriptive
Statistics Concise summary of the descriptive statistics for the metric data

Graph Structures
Shows circular dependencies and connected components in model element
relation graphs

Model Displays the UML model in a tabular format
Catalog Shows the definitions of all metrics, design rules, and relation matrices
Log Keeps a log of previous calculation runs
Table 2: Overview of SDMetrics' views

To open a view, use the "Views" menu from the menu bar. The following views are also accessible
via toolbar buttons: Metric Data Tables (), Histograms (), Kiviat Diagrams (), and the Rule
Checker view ().

Many views allow for navigation to other views. For example, views displaying metric data provide
links to the "Catalog" view to display the definition of the metrics, and links to the "Histogram"
view to view the distribution of the metrics. After following such links, the history buttons on
the toolbar navigate back and forth between the previously visited views.

4.3.1 Common controls in views

There are a number of control elements that are common to all or most views. This section describes
those frequently used controls.

© 2002-2021. All rights reserved. 15

SDMetrics ® User Manual 4.3 Calculating and Viewing Metric Data

Figure 8: Common controls used in most views

1. Most views show metric data for one model element type at a time, e.g. metrics for all
classes, all packages, all state diagrams, etc. These views provide a dropdown list from
which to select a model element type. With the "tape deck" controls next to the list you can
easily browse the various model element types.

2. Many views provide tables of data that can be sorted by columns. To sort a table by a
column, click the column header. This sorts the table rows in descending order. Click the
column header a second time to change the sorting order to ascending. Click the column
header a third time to restore the original order of the rows (no sort). Alternatively, you can
use the control panel provided by these views to sort the table:

• Select the column to sort by from the first dropdown list labeled "by".
• You can also specify a secondary column to sort by from the second dropdown list

labeled "and". Rows with equal values in the primary sort column are then sorted by
the secondary column.

• Press the or button to toggle between ascending and descending sort.
• To restore the original order of table rows, select the first entry "No sort" from the

sort dropdown list.

3. Most views have a save button to export the data presented in the view (tables of data or
graphs, see Section 4.15.1 "Exporting Data Tables" and Section 4.15.2 "Exporting Graphs").

4. All views feature a help button to open a description of the view in the user manual.

© 2002-2021. All rights reserved. 16

SDMetrics ® User Manual 4.3 Calculating and Viewing Metric Data

5. All views feature a close button in the upper right corner to close the view. Alternatively,
right-click on the tab of a view to open a context menu with further options. Or click on the
tab with the middle mouse button to close the view.

4.4 The View 'Metric Data Tables'

Figure 9: Table view of metrics

This view shows the metric data in a table. The left hand side of the table shows the names of the
model elements that were analyzed, one element per row. The right hand side of the table shows the
metric values for each model element, one metric per column. Via the control panel above the table
you can select the model element type, sort the table and highlight outlying values.

For large tables, use the vertical and horizontal scroll bars of the metrics table to see more columns
and rows. The left hand column showing the element names always remains visible in the table
view. To adjust its width, drag the separator bar between the two table sides to a suitable position.

The context menu of the table cells of the right hand side table provides links to

• the measurement catalog to display the detailed definition of the selected metric (see
Section 4.13 "The View 'Catalog'"),

• the histogram view showing the distribution of the selected metric (see Section 4.5 "The
View 'Histograms'"),

© 2002-2021. All rights reserved. 17

SDMetrics ® User Manual 4.4 The View 'Metric Data Tables'

• the Kiviat diagram view for the selected model element in (see Section 4.6 "The View
'Kiviat Diagrams'").

4.4.1 Highlighting Outliers

The table view supports highlighting of outliers based on one of two criteria: percentiles or distance
from the mean.

Percentiles

This option highlights values above or below a given percentile. For instance, you may choose to
highlight, in each column, the metric values equal or above the 95th percentile for the respective
metric. This highlights the top 5% metric values in each column.

You pick the percentile you wish to highlight from the top of the highlight dropdown list in the
control panel. If you choose a percentile above the median (50th percentile), all values above that
percentile are highlighted. If you choose a percentile below the median, the values below that
percentile are highlighted.

SDMetrics calculates percentiles using the empirical distribution function with averages. The list of
percentiles is configurable, see Section 4.16.2 "Percentiles".

Distance from the mean

This option highlights metric values with a certain distance from the mean value of the metric. The
distance is expressed in multiples of the metric's standard deviation. For example, you may choose
to highlight metric values larger than the mean plus four times the standard deviation of the metric.
Simply select the appropriate multiple from the highlight dropdown list.

"Distance from the mean" is meaningful for metrics defined on an interval or ratio scale.
"Percentiles" are meaningful for all ordinal scale metrics.

To remove any highlighting from the table, choose the first entry "nothing" from the highlight
dropdown list.

4.5 The View 'Histograms'

The histogram view provides a graphical representation of the distribution of a design metric.

© 2002-2021. All rights reserved. 18

SDMetrics ® User Manual 4.5 The View 'Histograms'

Figure 10: Histogram view

Select the metric to display from the dropdown list on the left control panel, or use the
buttons to select the first/previous/next/last metric on the list, respectively. Press the "Show full
definition" button to view the detailed definition of the metric in the measurement catalog (see
Section 4.13 "The View 'Catalog'").

The table below the metric definition shows some descriptive statistics for the metric:

• Max - maximum value of the metric
• xth - the xth percentile of the metric, for various values of x
• Min - minimum value of the metric
• Count - the number of observations (UML model elements) for which the metric was

calculated
• Mean - the average value of the metric distribution
• StdDev - the standard deviation of the metric distribution

The diagram on the right shows the distribution of the selected metric. You can choose between two
types of diagrams with the radio buttons below the diagram:

• Show histogram
The histogram is a type of bar graph that depicts the frequency of metric values in class
intervals by the length of its bars. The scale of measurement on the horizontal axis is the
range of the metric under consideration. It is subdivided into intervals of equal width. The
plot points on the horizontal axis are the exact limits of the interval. The height of the bar for
each interval is proportional to the number of values that fall into the interval. This number
is also shown on top of each bar.

• Show cumulative distribution
The cumulative distribution graph shows, for any value x in the range of the metric, the

© 2002-2021. All rights reserved. 19

SDMetrics ® User Manual 4.5 The View 'Histograms'

percentage of model elements for which the metric value is <=x. The scale of measurement
on the horizontal axis is the range of the metric under consideration. The scale on the
vertical axis is the percentage of elements below a given threshold x on the horizontal axis.

If you see a "Diagram not available" message instead of a graph, the measurement values of the
selected metric are not numerical or do not vary at all, or both. No graph is shown for such metrics.

4.6 The View 'Kiviat Diagrams'

This view shows information for one UML design element at a time. On the control panel to the
left, you can choose the element to display. The panel on the right hand side graphically displays the
values of all metrics defined for the element.

Figure 11: Kiviat Diagram View

Select the element to display from the tree at the top of the control panel. You can adjust the size of
the tree with the separator bars below and to the right. Use the buttons or the cursor keys to
navigate through the tree.

The graph on the right hand side is a so-called Kiviat diagram, showing the measurement values of
all metrics for the selected element. Each axis (or ray) of the graph represents one metric, as labeled
in the graph. The measurement scale of each axis is the range of the metric: the minimum value is
located in the center, the maximum value at the outer end. The axes are linearly scaled.

© 2002-2021. All rights reserved. 20

SDMetrics ® User Manual 4.6 The View 'Kiviat Diagrams'

The thick line connects the measurement values of the selected element for each metric on the axes.
If the element has many relatively large values, the area enclosed by the thick line will be large. So
the size of the enclosed area serves as an indicator of the criticality of the element.

Note that metrics with non-numerical values, or metrics that do not vary at all, are not suitable for
the graph and therefore omitted. Also, the Kiviat graph can only be shown for elements with at least
three suitable metrics. If you see a "Diagram not available" message instead of a graph, there are
less than three suitable metrics for the selected element type.

Below the element tree you can choose to display information about metric percentiles of the
selected model element, or to display the descriptive statistics for a metric shown in the graph.

Percentiles

The percentiles table shows, for various percentiles (column "Prctl."), the number of metrics for
which the measurement values exceed the percentile for the selected element (column "Count").
Assuming we mostly deal with metrics where higher values indicate lower quality, a design element
should be considered critical if a larger number of metric values for the element are in the upper
percentiles (e.g., 90th, 95th).

The percentiles table also controls which percentiles of the metrics are displayed in the graph.
Check the boxes in the column "Draw" for the percentiles to display. This gives an indication how
the measurement values of the selected element compare to all other elements. Column "Color"
indicates the color for each percentile on the graph.

Descriptive Statistics

If you click near one of the axis in the Kiviat diagram, a short definition of the metric and its
descriptive statistics with minimum and maximum values will be displayed on this tab.

The context menu of the graph provides links the measurement catalog (see Section 4.13 "The View
'Catalog'") and histogram (see Section 4.5 "The View 'Histograms'") for the metric of the nearest
axis.

4.7 The View 'Rule Checker'

Design rules and heuristics detect potential problems in your UML design, for example:

• incomplete design such as unnamed classes, states without transitions,
• incorrect design such as an interface having an association with navigability away from the

interface,
• style issues such as circular dependencies among packages, a class referencing one of its

subclasses,
• violation of naming conventions for classes, attributes, operations, packages,
• etc.

© 2002-2021. All rights reserved. 21

SDMetrics ® User Manual 4.7 The View 'Rule Checker'

Appendix C: "List of Design Rules" contains the list of design rules that SDMetrics implements. Of
course, you can customize this list to your needs, and define new design rules of your own. This is
described in Section 8.3 "Definition of Design Rules".

The 'Rule Checker' view displays design rule violations in a table. Each row of the table represents a
violation of a design rule by a design element.

Figure 12: Design Rule Checker

The meaning of the columns is as follows:

• Name: Name of the design element that violates the rule.
• Rule: Name of the violated rule.
• Value: Some rules return a value that provides additional information about how the design

element violates the rule.
• Category: The category of the rule describes the criteria the rule checks, for example

naming, completeness, correctness, or style.
• Severity: The severity of the violated indicates how critical the violation of the rule is, and

therefore how urgently it should be resolved.
• Description: A short description of the violated rule.

The context menu of right hand side table contains links to the measurement catalog showing the
detailed definition of the violated rule in the selected row (see Section 4.13 "The View 'Catalog'"),
and the Kiviat diagram for the model element in the selected row (when available).

Sort the table of design rule violations by columns, e.g., to quickly find all rule violations for a
particular design element, all violations of a particular rule, or to sort the rule violations by their
severity or category. Section 4.3.1 "Common controls in views" describes how to sort tables.

© 2002-2021. All rights reserved. 22

SDMetrics ® User Manual 4.7 The View 'Rule Checker'

4.7.1 Filtering Design Rules

Some design rules only apply to certain types of UML models, e.g., models at a particular
development phase (e.g., requirements, analysis, design), models of a particular application domain
(e.g., embedded systems, real time systems), etc.

The measurement catalog indicates the applicable types of models for each rule. With the design
rule filter, you can instruct SDMetrics to only check and report design rules that apply to your
model at hand.

Writing Rule Filters

Table 3 shows some example filters and explains their function. For the example, we assume we
have four application areas defined:

• analysis (rules for analysis models)
• design (rules for design models)
• realtime (rules for models of real-time systems)
• pedantic (rules about obsessive details)

© 2002-2021. All rights reserved. 23

SDMetrics ® User Manual 4.7 The View 'Rule Checker'

Example Filter Explanation

design

To only check the rules of one application area, simply specify the name of
that application area.
The example filter only checks rules that are applicable at the design
phase.

design&realtime

To check rules applicable to all of several areas, combine the areas with
the & operator.
The example filter only checks rules that are applicable to real-time
systems at the design phase.

analysis|design

To check rules applicable to at least one of several areas, combine the
areas with the | operator.
The example filter only checks rules that are applicable at the analysis
phase or at the design phase.

!analysis

To check rules that do not apply to a particular area, precede the name of
the area with the ! operator.
The example filter only checks rules that do not apply to the analysis
phase.

'design'

Some rules do not explicitly define an application area. Such rules are
implied to apply to all areas. Therefore, the filter design will also check
rules that do not specify any application area at all.
To instruct SDMetrics to only check rules that explicitly are defined for an
application area, put the application area in single quotes.
The example filter only checks design rules which explicitly list "design"
among their application areas.

design&
(!'realtime'|
pedantic)

Using parentheses, you can define arbitrarily complex rule filters. The
example filter checks all rules applicable to the design phase that are also
not explicitly defined for real-time systems or are pedantic.

Table 3: Rule filter examples.

Applying Rule Filters

To apply a filter, specify it in the "filter" text field at the top of the rule checker view, and press
return or click the "Apply" button. To clear the filter, and show all design rule violations regardless
of their application area, click the "Clear" button.

If your filter contains a syntax error (illegal operation, unmatched parentheses etc.) you will get an
error message and the rules will not be checked. If your filter specifies an application area that is not
defined explicitly by at least one rule, SDMetrics will warn you about this, but will check the rules
anyway.

4.7.2 Accepting Design Rule Violations

Rules are there to be bent once in a while. That is, sometimes there is a justification why a particular
model element should be allowed to violate a particular rule. Such approved rule violations should
not be reported anymore for the model element. You achieve this with specific tags or comments
that you add to the model element in your UML tool. The procedure differs for UML 1.x and UML
2.x models.

© 2002-2021. All rights reserved. 24

SDMetrics ® User Manual 4.7 The View 'Rule Checker'

UML 1.x

To allow a model element e to violate a rule named rulename, define a tagged value for e, where
the tag name is violates_rulename (please refer to the manual of your UML modeling tool
for details on how to add tagged values). The value of the tagged value pair is ignored by
SDMetrics. You can use the value for instance to document the reason why the model element is
allowed to violate the rule.

For example, if after a design review a particular class is allowed to violate rules named "GodClass"
and "MultipleInheritance", you add two tagged values to the class, one with tag
violates_GodClass and the other with the tag violates_MultipleInheritance.
From then on, violations of these two rules will no longer be reported for that class (and only these
two rules, and only for that class).

UML 2.x

UML 2 no longer has tagged values as they are known in UML 1.x, but every model element can
own comments. To exempt a model element from one or more rules, add one or more comments
where the body text contains the string violates_rulename for each rule the model element is
allowed to violate. Please refer to the manual of your UML modeling tool for details on how to add
comments. An example comment body text could be:
"violates_GodClass, violates_MultipleInheritance: confirmed in
review"

The comment's body can contain additional text before, after, or between the
violates_rulename tags. You can use this to document the reason why the model element is
allowed to violate the rule.

Customizing rule exemption annotations

If the above methods to mark elements as exempt from certain rules do not suit you, the method is
customizable to some degree, see Section 8.3.6 "Exempting Approved Rule Violations".

4.8 The View 'Descriptive Statistics'

The descriptive statistics view provides a tabular summary of the descriptive statistics for all
metrics.

© 2002-2021. All rights reserved. 25

SDMetrics ® User Manual 4.8 The View 'Descriptive Statistics'

Figure 13: Descriptive statistics view

Each row of the table represents one design metric, the columns provide the descriptive statistics
(minimum, maximum, mean, standard deviation, and several percentiles). The context menu of the
table links to the histogram view for the selected metric (Section 4.5 "The View 'Histograms'"), and
its full definition in the measurement catalog view (Section 4.13 "The View 'Catalog'").

4.9 The View 'Design Comparison'

The design comparison view allows you to compare the structural properties of two UML designs.
This is useful in a number of situations.

Comparing subsequent versions of a design. Object-oriented systems are usually developed in an
incremental, iterative fashion. After a design phase at the beginning of an iteration, you can
compare the current design to the previous iteration:

• Size metrics deltas quantify the growth in size of the design. This serves as an input to the
planning of the implementation and testing efforts for the remainder of the iteration.

• Identify parts of the system design that have undergone much change. Schedule these parts
for review to ensure they are still in line with the original vision for the architecture, and if
not, whether the deviation is justified.

Comparing design alternatives. If you have modeled alternative solutions to a design problem, the
structural properties of the candidate designs can help support the decision which of the alternatives
to choose for implementation.

© 2002-2021. All rights reserved. 26

SDMetrics ® User Manual 4.9 The View 'Design Comparison'

4.9.1 Calculating and Viewing Metric Deltas

The steps to compare two designs with SDMetrics are as follows.

1. Calculate the metrics for the first (or older) design to compare as usual, as described in
Section 4.3 "Calculating and Viewing Metric Data".

2. In the topmost text field of the design comparison view, specify the XMI file with the
second (or newer) design to compare. If supported on your platform, you can also drag and
drop the XMI file anywhere in the design comparison view.

3. Press the button next to the text field where you specified your second model. This will
calculate the metrics for the second design, and the metric deltas to the first design.

Figure 14: Design Comparison

The design comparison view provides two sets of tables: metric deltas and descriptive statistics. By
default, the tables show the difference of measurement values between the first and second design
(value in first design minus value in second design). To show the relative difference of the value in
the second design as percentage of the value in the first design, select the "Show relative deltas"
radio button next to the element type dropdown list.

The context menu of the right hand side table links to the detailed definition of the selected metric
in the measurement catalog (see Section 4.13 "The View 'Catalog'").

4.9.2 Metric Deltas Table

This tab presents the metric deltas in a table. The table is organized in the same way as the metric
data table view (see Section 4.4 "The View 'Metric Data Tables'"): design elements by row, metrics

© 2002-2021. All rights reserved. 27

SDMetrics ® User Manual 4.9 The View 'Design Comparison'

by column. In the metric columns, positive metric deltas indicate how much the metric value for the
design element has increased in the second design, negative metric deltas indicate how much the
metric value has decreased. Increased and decreased values are also highlighted by colors (green for
increased values, red for decreased values). You can change these colors to your preferences, see
Section 4.16.4 "Appearance".

For non-numerical metrics, the metric columns show the metric values for the second design. The
value is preceded by a "=" if the metric value is unchanged from the first design, or a "#" if the
metric value has changed. Changed values are also indicated by the color red.

When comparing designs, we will usually have elements in the first design that have been deleted in
the second design, and elements added to second design that were not present in the first design. In
the "Name" column, added and deleted elements are indicated by their color (green for added
elements, red for deleted elements). The last column "AD_Status" also shows the status of each
element: A for added, D for deleted, and empty for elements present in both designs. Use this
column to sort elements by their status, and to identify the element status when exporting the table
data to a file.

4.9.3 Comparative Descriptive Statistics Table

This tab sheet shows a side by side comparison of the descriptive statistics for both designs. The
table shows the metrics by row.

Figure 15: Comparing descriptive statistics

The meaning of the first four columns is as follows:

• PosDeltas: the sum of all positive metric deltas for the metric.
This indicates how much the metric values increased by adding new elements or modifying
existing ones.

© 2002-2021. All rights reserved. 28

SDMetrics ® User Manual 4.9 The View 'Design Comparison'

• NegDeltas: the sum of all negative metric deltas for the metric.
This indicates how much the metric values decreased by deleting elements from the design,
or modifying existing ones.

• PosD_na: the sum of all positive metric deltas for the metric, excluding added elements.
This indicates how much the metric values have increased by modifying existing design
elements.

• NegD_nd: the sum of all negative metric deltas for the metric, excluding deleted elements.
This indicates how much the metric values have decreased by modifying existing design
elements.

The remainder of the columns in the table shows the descriptive statistics including sum, mean, and
percentiles for the first design, second design, and the difference for each descriptive statistic.

4.9.4 Mapping Design Elements

To calculate metric deltas, SDMetrics matches the design elements of the first design with the
elements of the second design. Matches are based on the fully qualified names of the design
elements (see Section 4.2.2.1 "Qualified Element Names"). This causes problems if a model
element such as package has been renamed between designs. Because of the name change, the
package and all of its contents can no longer be matched between designs. The package under its
old name is considered to be deleted, and newly added under its new name.

To improve the element matching for renamed elements, you can define explicit element mappings.
Click the button to open the element mappings dialog.

Figure 16: Element Mappings

Enter the old name of the renamed element in the first design in the upper left text field. Enter the
new name of the element in the second design in the upper right text field. Press "Add" to add the
mapping to the list of mappings below.

To remove a mapping from the list, select the mapping on the list and then press the "Delete"
button. To remove all mappings, press the "Clear all" button. Click the button to save the current

© 2002-2021. All rights reserved. 29

SDMetrics ® User Manual 4.9 The View 'Design Comparison'

list of mappings to a file, and the button to load a previously saved list. Or drag and drop the
mapping file anywhere into the mappings dialog or the design comparison view.

Mapping Examples

• The model names of the designs to compare may differ.
If the name of your first model is firstmodel, and the name of your second model is
secondmodel, all qualified element names start with "firstmodel." and "secondmodel.",
respectively.
Define the mapping firstmodel <-> secondmodel so that the elements are properly matched.

• An element has been renamed and/or moved.
A package model.mypackage of the first design has been renamed to myotherpackage and
moved to be a subpackage of a third package model.mythirdpackage in the second design.
Define the mapping model.mypackage <-> model.mythirdpackage.myotherpackage to match
the package and all elements within.

• An element has been split, or joined with another element.
A package model.bigpackage has been split into two packages model.smallpackage1 and
model.smallpackage2.
Define two mappings: model.bigpackage <-> model.smallpackage1 and model.bigpackage
<-> model.smallpackage2. That way, elements in model.smallpackage1 and
model.smallpackage2 will be mapped to elements in model.bigpackage.

4.9.5 Exporting Metric Deltas

The design comparison view provides two buttons for data export. To export metric deltas data to a
file, click the button. To export the comparative descriptive statistics table, click the button.
This will open an export dialog where you can specify file names, data format, and whether to
export to single or separate files (see Section 4.15.1 "Exporting Data Tables").

4.10 The View 'Relation Matrices'

The relation matrices view shows relations between individual design elements. For example, the
relation matrix in Figure 17 shows the inheritance relationships from child classes (rows) to parent
classes (columns).

The rows of a relationship matrix show the source design elements from which the relationship
originates, the columns contain the target design elements of the relation. The table cells indicate
the presence or number of relationships between the respective source and target design element.

The dropdown list above the table shows the available relation matrices. Select the relation matrix
for display from this list.

© 2002-2021. All rights reserved. 30

SDMetrics ® User Manual 4.10 The View 'Relation Matrices'

Figure 17: Relation matrix

Relation matrices can become quite large. Use the vertical and horizontal scroll bars of the table to
see more columns and rows, as needed. The left hand column showing the source element names
always remains visible. To adjust its width, drag the separator bar between the two table sides to a
suitable position. The column header shows the names of the target elements. To increase or
decrease the height of the column header, use the and buttons above the table. You can
adjust the width of the table columns with the and buttons.

The "Show full definition" button above the matrix opens the measurement catalog with a detailed
definition of the currently selected matrix (see Section 4.13 "The View 'Catalog'").

Appendix D: "List of Matrices" describes the relation matrices that SDMetrics calculates. Note that
the relation matrices view will only show relation matrices that are not empty. A matrix is empty if

• the model does not contain at least one source design element and one target design element
(zero rows or columns), or

• there are no relationships from source design elements to target design elements (all table
cells are empty).

You can define and display additional relation matrices of your own, the procedure is described in
Section 8.4 "Definition of Relation Matrices".

© 2002-2021. All rights reserved. 31

SDMetrics ® User Manual 4.11 The View 'Graph Structures'

4.11 The View 'Graph Structures'

SDMetrics features design metrics that count connected components in a graph, and design rules
that check for cycles in a graph. The graph structures view shows you these connected components
and cycles.

The view contains two register tabs, one for viewing cycles, the other for viewing connected
components.

4.11.1 Viewing Cycles

Figure 18 shows the register tab for viewing cycles in graphs.

Figure 18: Graph Structures View - Cycles

There is one graph for each design rule that checks for cycles. From the dropdown list at the top,
you can select the design rule for which you want to show the cycles. Click the "Show full
definition" button to open the definition of the rule in the measurement catalog (Section 4.13 "The
View 'Catalog'").

The tree below initially shows all model elements that depend on at least one other model element.
The type of model elements and nature of the dependencies are defined by the selected design rule.
Expand the model elements to the see on which other elements they depend. The icon next to each
model element indicates its cycle status:

• Red icon: The element has dependencies and is part of one or more cycles.

© 2002-2021. All rights reserved. 32

SDMetrics ® User Manual 4.11 The View 'Graph Structures'

• Yellow icon: The element has dependencies but is not part of any cycle.
• White icon: The element has no dependencies.

By expanding the elements with red icons, you can quickly trace the cycles present in the design.
Note that the dependency tree is always shown, even if there are no cycles at all.

Use the "Reverse direction" button in the upper right corner to switch to a new tree that reverses the
direction of the dependencies. Expanding a model element e shows all model elements that depend
on e.

4.11.2 Viewing Connected Components

Figure 19 shows the register tab for viewing connected components.

Figure 19: Graph Structures View - Connected Components

From the dropdown list at the top, you can select the metric for which you want to show the
connected components. Click the "Show full definition" button to view the definition of the metric
in the measurement catalog (Section 4.13 "The View 'Catalog'").

The tree on the left hand side shows the model elements for which the connected components are
calculated. Column "#CC" indicates the number of connected components for each model element.
If you select a model element in the tree, the connected components will be shown in a tree
structure on the right hand side.

© 2002-2021. All rights reserved. 33

SDMetrics ® User Manual 4.11 The View 'Graph Structures'

The top level nodes of the right hand side tree represent the connected components. The child nodes
represent the model elements of each connected component.

4.12 The View 'Model'

This view shows the "raw" UML model information that SDMetrics extracted from your XMI files.
For each element type, you obtain one table showing the model elements by row, element attributes
by column.

Figure 20: The View 'Model'

Figure 20 shows, for example, the table for metamodel element "package" with three of its
attributes "id", "name", and "context" (see Section 7.1 "SDMetrics Metamodel" and Appendix A:
"Metamodels"). The table provides the XMI id, name, and a reference to its owner (XMI id of the
owner) for all packages of the UML model.

Likewise, you obtain tables for all other model element types with their respective attributes. As a
result, you have a complete representation of your UML design in a table format (complete as far as
SDMetrics' design measurement and rule checking requirements are concerned).

The context menu of the table provides quick access to the Kiviat diagram of the selected element,
as well as simple navigation feature for cross-reference attributes. Via the context menu for cross-
reference attributes you can find and show each model element referenced by the cross-reference
attribute. With the and arrows in the upper right corner of the model view you can move
back and forth within the previously selected model elements.

The most important feature of this view is the save button to export the tables to files (see
Section 4.15.1 "Exporting Data Tables"). These files are easy to parse. This feature is useful if you

© 2002-2021. All rights reserved. 34

SDMetrics ® User Manual 4.12 The View 'Model'

want to build a custom application that performs operations on your UML designs, using the
flexible XMI import capabilities of SDMetrics.

The model view also comes in handy when you create your own custom metamodels and XMI
transformations (see Section 7 "SDMetrics Metamodel and XMI Transformation Files"). You can
use this view to quickly verify if your XMI transformations work as intended.

4.13 The View 'Catalog'

The catalog view shows the definitions of the metrics, design rules, and relation matrices for the
current data set, and provides literature references and a glossary for them.

Figure 21: The View 'Catalog'

Selecting tables

From the dropdown list at the top of the catalog, you can select the following items to explore:

• Metrics - lists all design metrics in the table. For each metric, the table shows the name of
the metric, its domain (the type of element it measures), its category (the property it
measures), and a brief description.

• Rules - lists all design rules in the table. For each rule, the table shows the name of the rule,
its domain (the element type it applies to), its category, its severity, its applicable areas, as
well as a brief description of the rule.

• Matrices - lists the relation matrices in the table. For each matrix, the table shows the types
of elements in the rows and columns, and a brief description of the matrix.

© 2002-2021. All rights reserved. 35

SDMetrics ® User Manual 4.13 The View 'Catalog'

• References - shows a list of literature references and their bibliographic citations.
• Glossary - shows a list of measurement terms with definitions.

Showing detailed descriptions

Click any row in the table to see a detailed description of the selected item in the lower part of the
window.

The detailed descriptions often contain cross-references to other metrics, rules, or matrices, include
literature references, or reference terms from the glossary. These references are hyperlinks that take
you to the full definition of the referenced item. Use the and arrows in the upper right corner
of the catalog view to move back and forth within the previously visited definitions.

Sorting tables

You can sort each table by its columns, e.g., to quickly find all metrics for a particular domain, all
rules of certain severity level, and so on. Section 4.3.1 "Common controls in views" describes how
to sort tables.

4.14 The View 'Log'

The log view provides a log of the messages that SDMetrics generates on the progress bar during a
calculation run.

Figure 22: The 'Catalog' View

The log shows which project files have been selected by SDMetrics for processing and why, as well
as the calculations that have been performed. You can use the output of the log to document
calculation runs performed via the GUI.

© 2002-2021. All rights reserved. 36

SDMetrics ® User Manual 4.14 The View 'Log'

The copy button copies the current contents of the log view to the clipboard. The clear buttons
deletes all log entries from the view.

When the "Append" checkbox is selected, the log entries of subsequent calculation runs will be
appended to the log. When the "Append" radio button is deselected, the log will be cleared
automatically before each new calculation run.

Via the save button you can save the current log entries to a ".txt" or ".log" file.

4.15 Exporting Data

SDMetrics allows you to export data tables and graphs:

• You can export data tables from the metric data tables view, rule checker view, descriptive
statistics view, design comparison view, relation matrices, and the UML model view.

• You can export graphs from the histogram and Kiviat diagram views.

SDMetrics provides separate export dialogs for data tables and graphs, which will be explained in
the following sections. These dialogs allow you to customize output features that are likely to be
changed frequently. Some additional output features can be set in the output preferences dialog, see
Section 4.16.3 "Output".

4.15.1 Exporting Data Tables

Figure 23 shows the export dialog for data tables.

Figure 23: Data Export Dialog

To specify the export, you have a number of options:

© 2002-2021. All rights reserved. 37

SDMetrics ® User Manual 4.15 Exporting Data

Select export to one file or separate files. Usually, you will have several data tables, one for each
element type. Here you specify if you want to store all tables in one file, or have each table written
to a separate file.

Sanitize data. This option is only applicable to the data tables of the metric data tables view. The
first table column of those tables shows the names of the design elements that were analyzed. Check
this option to suppress the output of the element names. This can be useful if, for confidentiality
reasons, you want to pass on or publish the metric data without disclosing the element names.

Select the file name. Enter the name of the file to write the data to. If you chose to export the data
to separate files, the name you enter here will serve as a base name for the files created.
Example: You have tables for classes, packages, and interfaces, and enter "data" as file base name.
This will create three files:

• data_Class.txt
• data_Package.txt
• data_Interface.txt

The file base name is extended with an underscore and the name of the model element type the file
contains.

Select the file format (Files of type). The following formats are available from the "Files of type"
dropdown list:

• Tab-separated text.
Writes the data to text files with ".txt" file extension. Columns are separated by tabs, the first
row contains the metric names. This format can be read by most spreadsheet software and
statistical packages.

• Comma-separated vectors.
Writes the data to text files with ".csv" file extension. Columns are separated by commas,
unless you specified a different delimiter, see Section 4.16.3 "Output".
Note: For CSV and text files you should prefer the "export to separate files" option, as these
formats do not really support multiple tables in a single file.

• HTML.
Writes the data to HTML files, using HTML tables. When you export to separate HTML
files, SDMetrics will additionally create a HTML frame set for convenient viewing of all
tables.

• OpenDocument Spreadsheet
Writes the data to .ods files. This format is used by the various OpenOffice/LibreOffice
incarnations, as well as many other office solutions.

• Excel XLSX File
Writes the data to .xslx files for Microsoft® Excel™ 2007 or later.

• Excel XML File
Writes the data to .xml files for Microsoft® Excel™ XP (2002) or later.

• OpenOffice.org Calc
Writes the data to .sxc files for OpenOffice.org 1.0 Calc or later.

© 2002-2021. All rights reserved. 38

SDMetrics ® User Manual 4.15 Exporting Data

4.15.2 Exporting Graphs

Figure 24 shows the export dialog for graphs:

Figure 24: Export Graphs Dialog

The options for the graph export are:

Graph type to export You can export one of the three available graph types at a time:

• Histograms for metrics
• Cumulative distribution graphs for metrics
• Kiviat graphs for design elements

Graphs to export determines for which metrics or elements you wish to export graphs. You have
the following choices:

• Current graph: <name> exports only the graph for the metric currently shown in the metric
browser (or element in the element browser); the name of that metric or element is shown
next to the option.

• All graphs for: <type name> exports the graphs for all metrics or elements of the currently
selected element type; the element type name is shown next to the option.

• All graphs exports the graphs for all element types.

Create one HTML page for You can additionally create HTML pages that contain the exported
graphs:

• each individual graph creates, for each exported graph, one HTML page that shows the
graph.

© 2002-2021. All rights reserved. 39

SDMetrics ® User Manual 4.15 Exporting Data

• each element type creates for each element type one HTML page that shows all the graphs
for that element type (e.g., a page with all class metric diagrams and so on).

• all graphs creates one HTML page that shows all the graphs
• using frames - Select this option if you want the HTML pages that show multiple graphs be

organized in frames.

Format You can choose between the following file formats for the exported graphs:

• SVG - Scalable Vector Graphics
• PNG - Portable Network Graphics
• JPG images

Size Here you can specify the width and height of the graphs, in pixels.

Save to file: Specify a file base name for the graph and HTML files to be written. SDMetrics will
extend the base name with element type names, metric names, and the proper file extension. For
example, if you specify the base name "C:\graphs\model", exporting all graphs will generate files
named "C:\graphs\model_Class_NumOps.svg", "C:\graphs\model_Package.html", and so on.

Finally, to export the graph(s) as specified above, press the "Save graphs" button. The "Close"
button closes the dialog without exporting the graphs.

Note that exporting a large number of graphs in PNG or JPG format can take some time, you can
monitor the progress on the status bar of the main window.

4.16 Setting Preferences

The preferences dialog is available via the menu bar "Project -> Preferences", or click the button
on the tool bar. The preference options are organized in several tab sheets: Project file sets,
percentiles, output, appearance, and behavior.

4.16.1 Project File Sets

SDMetrics maintains a list of project file sets (see Section 4.2.1 "Specifying Project Files"). Each
project file set contains one XMI transformation file (for a specific XMI version and possibly a
specific XMI exporter), one metamodel definition file, and one metric definition file.

When SDMetrics analyzes an XMI file, it retrieves the XMI version from the file, as well as the
name and version of the XMI exporter that created the file. SDMetrics then selects from the list of
available project file sets the one that best matches the specification of the XMI file at hand.

If you downloaded updated project files from the SDMetrics web site www.sdmetrics.com, or wrote
your own project files, and want to use these files by default, you can define new project file sets or
change the existing ones. That way, you do not have to specify your custom project files over and
over again in the project settings dialog.

© 2002-2021. All rights reserved. 40

http://www.sdmetrics.com/

SDMetrics ® User Manual 4.16 Setting Preferences

Open the preferences dialog and select the tab sheet "Project File Sets":

Figure 25: Project File Set Preferences

The tab sheet shows a list of all available project file sets. You can add, modify, copy, import, and
delete entries from the list.

4.16.1.1 Adding New Project File Sets

To define a new project file set, click the "New..." button. This opens an editor where you can
specify the parameters of the project file set:

Figure 26: Project File Set Editor

The parameters of a project file set are as follows:

• Name of entry: The name of the project file set.
• XMI Transformation File: The location of the XMI transformation file of this project file

set. Enter the file name in the text field, or use the "Browse..." button to locate the file via a
file chooser dialog.

© 2002-2021. All rights reserved. 41

SDMetrics ® User Manual 4.16 Setting Preferences

• XMI version number(s): The XMI version numbers or version-namepaces that the XMI
transformation file handles. For XMI versions 1.0 to 2.1, indicate the version number as
shown in the "version" attribute in the XMI file. For XMI version 2.4 and later, indicate the
version-namespace, that is, the last part of the XMI namespace. For example, the XMI 2.4.1
namespace is "http://www.omg.org/spec/XMI/20110701", so the version-namespace is
20110701.
List all supported XMI version numbers and/or version namespaces, separated by
semicolons, e.g. 2.0;2.1;20110701.

• Exporter: If you created the XMI transformation file for a specific XMI exporter, enter the
name of the exporter here. Use the exact name of the exporter as indicated in the
XMI.exporter element in the documentation section of the XMI files produced by the
exporter.
Leave this field empty if the XMI transformation file is not written for a specific exporter.

• Exporter Version(s): If you created the XMI transformation file for a specific version of an
exporter, specify the version number here. Use the exact version number as indicated in the
XMI.exporterVersion element in the XMI files produced by the exporter. If the XMI
transformation file is suitable for several exporter versions, list all supporter exporter version
numbers, separated by semicolons.
Leave this field empty if the XMI transformation file is not written for a specific version of
the exporter.

• Metric definition file: The location of the metric definition file of this project file set. Enter
the file name in the text field, or use the "Browse..." button to locate the file via a file
chooser dialog.

• Metamodel definition file: The location of the metamodel definition file of this project file
set. Enter the file name in the text field, or use the "Browse..." button to locate the file via a
file chooser dialog.

• Auto-selectable: Controls if the project file set is available for selection if you let
SDMetrics automatically select the project file set to use for a given XMI input file. When
disabled, the project file set can only be selected manually.

4.16.1.2 Importing Project File Sets

To import project file sets from the SDMetrics web site, download and save the Zip archive to a
folder where you can store it permanently. Click the "Import..." button. This opens a file chooser
dialog; select the Zip file and click "OK" to import the project file sets from the archive.

If the Zip archive contains project file sets you have already installed, you will be asked what to do
with the duplicates. You can either

• replace your old project file sets with the new ones from the archive, or
• keep your old project file sets, the new ones from the archive will be added to the list and

marked as updates.

If you intend to modify the project files in the Zip archive, extract the archive so you can edit the
project files. In the file chooser dialog, select the file contents.xml that was extracted from the
archive. This will import the project file set using the extracted files.

© 2002-2021. All rights reserved. 42

SDMetrics ® User Manual 4.16 Setting Preferences

4.16.1.3 Editing, Copying, and Deleting Project File Sets

To edit an existing project file set, double-click its entry on the list, or select the entry and click the
"Edit..." button. This opens the editor window where you can modify the details.

To copy the settings of an existing project file set, select its entry on the list and then click the
"Copy" button. This opens the editor window where you can modify the details. When you close the
editor window with the "OK" button, a new entry with the modified settings will be added to the
list; the originally selected entry remains unchanged.

To delete an entry from the list, select the entry and click the "Delete" button.

4.16.1.4 The Default Project File Sets

SDMetrics ships with three default project file sets for the various versions of the UML and XMI:

• Default UML 1.x and XMI 1.0
• Default UML 1.x and XMI 1.1-1.3
• Default UML 2.x and XMI 2.x

These default project file sets cover all versions of the XMI currently in use. These project file sets
cannot be renamed or deleted from the list, and you cannot modify their XMI version and XMI
exporter name/version settings (the latter two being empty - no specific exporter). This is to ensure
that SDMetrics always finds a suitable project file set. However, it is easy to override the default
project file sets:

• When you specify a new project file set for any XMI version and no specific XMI exporter,
SDMetrics will always select your project file set over one of its default project file sets.

• You can replace the XMI transformation, metric definition, and metamodel definition files
associated with the default project file sets with your own.

Resetting default project file sets

The "Restore..." button resets the default project file sets to the "factory settings", that is, the default
XMI transformations and associated metamodel and metric definition files that originally ship with
SDMetrics.

Note that your custom project file sets will remain unaffected by this operation.

© 2002-2021. All rights reserved. 43

SDMetrics ® User Manual 4.16 Setting Preferences

4.16.2 Percentiles

You can determine which percentiles are shown in the metric data views and descriptive statistics.
Open the preferences dialog and select the tab sheet "Percentiles":

Figure 27: Percentiles Tab Sheet

The tab sheet shows the current list of percentiles. To add a percentile, type the percentile in the text
field labeled "Add new value", and press the enter (or return) key, or click the "Add" button. The
percentiles you enter must be valid floating-point numbers between 0 and 100. Always use a dot as
the decimal point.

To delete percentiles, select the percentiles to delete on the list. You can select multiple percentiles
by holding down the shift or control key on the keyboard while selecting list elements. Click the
delete button to remove the selected percentiles from the list.

Note: the new percentiles settings become effective when the next set of metrics is calculated.

© 2002-2021. All rights reserved. 44

SDMetrics ® User Manual 4.16 Setting Preferences

4.16.3 Output

The output preferences settings specify several aspects of SDMetrics' data export features. Open the
preferences dialog and select the tab sheet "Output":

Figure 28: Output Settings

File encoding

Specifies the character encoding of all non-binary output file formats (TXT, CSV, HTML, ODS,
XML, SXC and SVG). The dropdown list shows all available character encodings for your
platform. Default is ISO-8859-1 (also known as Latin-1). Choose an alternative encoding if your
UML model element names contain characters not available in ISO-8859-1.

CSV column separator

By default, the CSV (comma separated vector) format uses the comma to delimit the values in a
row of data. If you require a different delimiter, you can enter it here.

Quotes in CSV/text

The TXT and CSV output formats use certain characters as column and line delimiter. This leads to
a conflict if a value to be written itself contains one of these delimiters: writing the value "as is"
destroys the overall table structure of the output file.

A standard solution to resolve this conflict is to put quotes (") around the values - characters
between quotes will not be interpreted as column or line delimiters. If the value to be put in quotes
itself contains a quote character, that quote character is doubled in the output file (the value 5"10
thus becomes "5""10").

SDMetrics offers three strategies to deal with conflicting values in CSV and TXT output formats:

• Never - values will not be set in quotes, even if they are conflicting
• As needed - only conflicting values will be set in quotes
• Always - all values will be set in quotes, conflicting or not.

© 2002-2021. All rights reserved. 45

SDMetrics ® User Manual 4.16 Setting Preferences

Prompt user before overwriting an existing file

With this option enabled, SDMetrics will ask for your permission before overwriting existing files
when you export data tables or graphs. This setting only affects the GUI, not the command line
operation (which will always overwrite without asking).

4.16.4 Appearance

Here you can customize several aspects of the appearance of the SDMetrics user interface: font and
icon sizes, the look and feel, and the design comparison colors.

Figure 29: Appearance Dialog

Sizes

Click the up and down arrows to increase or decrease the size of the font and the icons in
SDMetrics' main window, menus, and dialogs. You can judge the resulting size by the preview
fields next to the size adjustment controls.

Make sure to change the sizes in small steps and "within reason". Too large or too small settings
may render the application difficult or impossible to use.

Note: you need to restart SDMetrics for the new size settings to become effective.

Look and Feel

To adjust the overall appearance - or look and feel - of SDMetrics, you have the following choices:

• Platform-specific: Uses the look and feel that best matches your operating system.

© 2002-2021. All rights reserved. 46

SDMetrics ® User Manual 4.16 Setting Preferences

• Java Look and Feel: The cross-platform look and feel of Java (also known as "Metal" with
"Ocean Theme").

• Custom: Here you can specify a custom look and feel, e.g., one provided by a third party.
Refer to the documentation of the custom look and feel package for the class name to enter
in the text field, and make sure the class is included in your CLASSPATH.
For example, to use Java's Nimbus look and feel, enter
javax.swing.plaf.nimbus.NimbusLookAndFeel into the text field.

Note: you need to restart SDMetrics for the new look and feel settings to become effective.

Design Comparison Colors

Here you can adjust the colors used to indicate added and deleted elements or increased or
decreased measurement values for design comparisons (see Section 4.9 "The View 'Design
Comparison'").

Click the button for the color you like to change. This opens a color chooser dialog where you can
select the new color.

4.16.5 Behavior

On this tab sheet you can customize various aspects of SDMetrics' behavior.

Figure 30: Behavior Dialog

Auto-size table columns to optimal width
When this option is enabled, the table columns in all data tables will individually be sized to
minimal width. When this option is disabled, all table columns in a table initially have equal width.

© 2002-2021. All rights reserved. 47

SDMetrics ® User Manual 4.16 Setting Preferences

Start application with maximized window
When this option is enabled, SDMetrics' main window will be fully maximized on startup. Deselect
this option to launch SDMetrics in a smaller window.

Enable File Drag and Drop
File drag and drop is a convenient way to select an XMI or other project file (see Section 4.2.1
"Specifying Project Files") for analysis: simply drag the file from an external file system
browser/explorer and drop it into SDMetrics' main window.

File drag and drop may not work on all combinations of operating system platforms and Java virtual
machines. If file drag and drop causes problems on your system, you can disable this feature here.
Note: You need to restart SDMetrics for changes to this setting to become effective.

Help Launch Configuration

The help launch configuration specifies the web browser to open the user manual with, and the
location of the user manual.

• By default, SDMetrics tries to open the user manual with the web browser that the operating
system associates with HTML files. If you wish to open the user manual in a different
browser, select 'Use custom browser' and enter the name of the executable of the browser
(complete with path information if the browser does not reside in the system path).

• SDMetrics expects the user manual to reside in the folder 'manual' of the installation
directory. If for some reason you wish to open the user manual from a different location,
select 'Use custom location' and specify an alternative directory that contains the SDMetrics
user manual.

© 2002-2021. All rights reserved. 48

SDMetrics ® User Manual 5 Running SDMetrics from the Command Line

5 Running SDMetrics from the Command
Line
You can run SDMetrics from the command line or shell scripts. This is useful to integrate
SDMetrics in automated processes.

The SDMetrics command line syntax is:

java com.sdmetrics.SDMetrics -xmi xmifile [-proj projfile] [-customPF pfsetname]
 [-meta mmfile] [-trans transformationfile] [-metrics metricsfile]
 [-filter filterstring]* [-nonmatching] [-ignore]
 [-compare 2ndxmifile] [-mapping mapfile] [-relative]
 [-gHisto] [-gCumDist] [-gKiviat] [-gFormat format]
 [-gHTMLPerDiag] [-gHTMLPerType] [-gHTMLForAll]
 [-gUseFrames] [-gWidth width] [-gHeight height]
 [-model] [-stats] [-relmat] [-rules [-rulefilter filter]]
 [-nometrics] [-s] [-one] [-f format] basename

The arguments in square brackets [] are optional. When followed by an asterisk (*), the bracket
contents can be repeated an arbitrary number of times, otherwise, at most one occurrence is allowed.
The meaning of the arguments is as follows.

Project file settings:

• xmi xmifile: XMI file for the design to be analyzed.
• proj projfile: name of a project settings file created via the GUI.

SDMetrics reads the project settings file and processes the project files as specified in there.
• customPF pfsetname: specifies the name of the project files set to use for the analysis.

If not specified, SDMetrics will automatically determine a project file set to use
• meta mmfile: file containing the SDMetrics metamodel.

If you do not specify a metamodel definition file, the metamodel of the project file set is
used.

• trans transformationfile: file containing the XMI transformations to be used to
read the XMI file.
If you do not specify a transformation file, the transformation file of the project file set is
used.

• metrics metricsfile: file containing the definition of the metrics.
If you do not specify a metrics definition file, the metrics definition of the project file set are
used.

Filter Settings:

• filter filterstring: adds filter filterstring to the list of element filters to
apply.

• nonmatching: When set, SDMetrics rejects elements that match none of the filters. The
default (switch not set) is to reject elements that match at least one of the filter strings.

• ignore: When set, links to rejected elements are not considered during metric calculation.
The default (switch not set) is to consider links to rejected elements.

© 2002-2021. All rights reserved. 49

SDMetrics ® User Manual 5 Running SDMetrics from the Command Line

Design comparison settings:

• compare 2ndxmifile: perform a design comparison with the design specified via the -
xmifile or -proj switch, and output the metric deltas. Note that 2ndxmifile contains
the second or newer design.

• mapping mapfile: file with element mappings to use for the design comparison.
• relative: Show deltas as relative percentages in output.

Output file settings:

• basename: Base name of the file(s) the output will be written to.
• model: additionally create a set of tables containing the UML model. Files will have suffix

"MODEL" appended to the base name.
• stats: additionally create a set of tables containing the descriptive statistics. Files will

have suffix "SD" appended to the base name.
• relmat: additionally create a set of tables containing the relation matrices. Files will have

suffix "RM" appended to the base name.
• rules: additionally create a set of tables containing the design rule violations. Files will

have suffix "RULES" appended to the base name.
• rulefilter filter an optional rule filter string specifying the rules to apply.

• nometrics: suppress export of metric data. Metric data tables are always created by
default, unless you set this switch.

• s: sanitized output; when set, model element names are not written to the output files
(metric data tables only).

• one: one file; when set, each set of tables is written to one file, otherwise each data table is
written to a separate file.

• f format: format of the output file(s). Admissible formats:
txt: Tab-separated text tables. This is the default if no format is specified.
csv: Comma-separated text tables.
html: HTML files containing the data in HTML tables.
ods: OpenDocument spreadsheet files for OpenOffice/LibreOffice.
xml: XML spreadsheet files for Microsoft Excel XP.
sxc: Spreadsheet files for OpenOffice.org 1.0 and later.

Graph export settings:

• gHisto: additionally export metric histograms. Files will have suffix "HISTO" appended
to the base name.

• gCumDist: additionally export cumulative distribution graphs for metrics. Files will have
suffix "CUMDIST" appended to the base name.

• gKiviat: additionally export kiviat diagrams for model elements. Files will have suffix
"KIVIAT" appended to the base name.

• gFormat format: format for the graphs to generate: SVG (default), PNG, or JPG
• gHTMLPerDiag: create one HTML page for each individual graph
• gHTMLPerType: create one HTML page for each element type
• gHTMLForAll: create one HTML page for all graphs
• gUseFrames: use frames for HTML graph pages

© 2002-2021. All rights reserved. 50

SDMetrics ® User Manual 5 Running SDMetrics from the Command Line

• gWidth width: width of the graphs in pixels (default: 640)
• gHeight height height of the graphs in pixels (default: 400)

Examples:

• java com.sdmetrics.SDMetrics -proj mypsettings.txt -s -f html
outfile
Reads the project files and filter settings from file mypsettings.txt and writes the
sanitized output to separate HTML files.

• java com.sdmetrics.SDMetrics -xmi myDesign.xmi data
Reads XMI file myDesign.xmi with standard XMI transformations, metamodel, and
metrics, and writes the output in separate text files with tab-separated tables (output files
start with name data).

• java com.sdmetrics.SDMetrics -xmi myDesign.xmi -rules -
rulefilter design -format html data
Reads XMI file myDesign.xmi with standard XMI transformations, metamodel, and
metrics, writes the metric data to separate HTML files (output files start with name data),
checks the design rules and writes the design rule violations to separate HTML files (output
files start with name dataRULES).

• java com.sdmetrics.SDMetrics -xmi myDesign.xmi -metrics
myMetrics.xml -filter #.java -filter #.javax -nometrics -stats
-one -f sxc dstats
Reads XMI file myDesign.xmi with standard XMI transformations and metamodel,
calculates metrics defined in myMetrics.xml, filters elements defined in the java and
javax packages, and writes the descriptive statistics for the metrics to an OpenOffice.org
Calc workbook file named dstats.sxc.
(Note: on some platforms, the # character may have a special meaning and needs to be
protected from the shell, usually by preceding it with a backslash or enclosing the filter
name in quotes).

• java com.sdmetrics.SDMetrics -xmi myDesign.xmi -filter
MyModel.MyPackage -nonmatching -model -one -f csv myDes
Reads XMI file myDesign.xmi with standard XMI transformation and metamodel, filters
all elements outside package MyPackage, and writes the metric data to file myDes.csv,
and dumps the model to file myDesMODEL.csv.

• java com.sdmetrics.SDMetrics -xmi myOldDesign.xmi -compare
myNewDesign.xmi -mappings MyMappings.txt -stats -one -f xml
deltas
Reads XMI files myOldDesign.xmi and myNewDesign.xmi, calculates the metric
deltas using the element mappings from file MyMappings.txt, and writes the metric
deltas and comparison of descriptive statistics to files deltas.xml and deltasDS.xml,
respectively.

• java com.sdmetrics.SDMetrics -xmi myDesign.xmi -one -f xml -
gHisto -CumDist -gFormat PNG -gHTMLforall -gUseFrames myDes
Reads XMI file myDesign.xmi, writes the metric data to file myDes.xml, creates a set
of PNG files with histograms (myDesHISTO_*.png) and cumulative distributions
(myDesCUMDIST_*.png) for all metrics, and creates a set of HTML pages with frames that
show the graphs (myDesHISTO_index.html, myDesCUMDIST_index.html plus additional
HTML navigation pages).

© 2002-2021. All rights reserved. 51

SDMetrics ® User Manual 6 Design Measurement

6 Design Measurement
In this section, we describe the theory behind design measurement - what are the structural
properties of a design and why can design metrics be considered quality indicators. We also discuss
how design measurement data can be interpreted, how it should not be interpreted, and provide
pointers to some useful data analysis techniques in the context of software design measurement.

6.1 Design Metrics and System Quality

A fundamental distinction for product quality attributes is between external and internal attributes
[ISO9126,FP96].

• External attributes are properties or features of the product that are externally visible (hence
the name), for example, reliability and maintainability. External attributes of products can
only be measured with respect to how the product relates to its environment. Poor reliability,
for instance, is visible to the user if the software system does not perform as expected. To
measure external attributes directly requires additional information besides the product itself.
For instance, reliability can be measured in terms of the mean time to failure of the
operational product. Thus, external attributes can be measured directly only some time after
the product is created.

• An internal attribute of a product can be measured in terms of the product itself. Examples
of internal product attributes are structural properties such as size or coupling. All
information that is needed to quantify the internal attribute is available from a representation
of the product. Therefore, these attributes are measurable during and after creation of the
product. Internal attributes, however, describe no externally visible quality of a product, and
therefore have no inherent meaning in themselves. For example, during the operation of a
system, the users will not notice whether the components of that system have loose coupling
or not.

If structural design properties are not inherently meaningful, why should we care about them at all?
Because we assume they have a causal impact on external quality. Undesirable structural properties
such as high coupling or low cohesion indicate a - sometimes necessary - high cognitive complexity.
Cognitive complexity is the mental burden put on the persons who have to deal with the design
(developers, inspectors, testers, maintainers, etc.). The high cognitive complexity in turn leads to
poor external quality, such as increased fault-proneness, or decreased maintainability and testability.

To summarize, external attributes are inherently relevant to the stakeholders in a software system,
but can be measured directly only late in the development process. Internal attributes are early
available but are not inherently meaningful. They become meaningful only when they are seen as
indicators of (or in relation to) external attributes. Besides early availability, the advantages of
design measurement are:

• Objectivity - the design assessment is repeatable and does not rely on subjective judgment.
• Automatable - with SDMetrics, measurement of even large designs can be performed

quickly and at a low cost.

© 2002-2021. All rights reserved. 52

SDMetrics ® User Manual 6.2 Structural Design Properties

6.2 Structural Design Properties

This section discusses the pertinent structural properties that can be measured for UML designs. For
each property we provide the following information:

• Definition: a short definition of the property.
• Impact on quality: the system quality attributes the property is hypothesized to impact, and

why.
• Empirical results: qualitative summary of results from empirical studies investigating the

usefulness of measures of the structural property. The summary is based on a literature
survey and comprehensive empirical investigation of design metrics, see [BW02] for full
details.

6.2.1 Size

Definition

Design size metrics measure the size of design elements, typically by counting the elements
contained within. For example, the number of operations in a class, the number of classes in a
package, and so on.

Impact on quality

Size metrics are good candidates for developing cost or effort estimates for implementation, review,
testing, or maintenance activities. Such estimates are then used as input for project planning
purposes and the allocation of personnel.

In addition, large sized design elements (e.g., big classes or packages) may suffer from poor design.
In an iterative development process, more and more functionality is added to a class or package
over time. The danger is that, eventually, many unrelated responsibilities are assigned to a design
element. As a result, it has low functional cohesion. This in turn negatively impacts the
understandability, reusability, and maintainability of the design element.

Therefore, interfaces and implementations of large classes or packages should be reviewed for
functional cohesion. If there is no justification for the large size, the design element should be
considered for refactoring, for instance, extract parts of the functionality to separate, more cohesive
classes.

Empirical results

Empirical studies consistently confirm the importance of size as the main cost driver in a software
project. Size metrics are also consistently good indicators of fault-proneness: large
methods/classes/packages contain more faults. However, since size metrics systematically identify
large design elements as fault-prone, these metrics alone are not suitable to find elements with high
fault density.

© 2002-2021. All rights reserved. 53

SDMetrics ® User Manual 6.2 Structural Design Properties

6.2.2 Coupling

Definition

Coupling is the degree to which the elements in a design are connected.

Impact on quality

Coupling connections cause dependencies between design elements, which, in turn, have an impact
on system qualities such as maintainability (a modification of a design element may require
modifications to its connected elements) or testability (a fault in one design element may cause a
failure in a completely different, connected element). Thus, a common design principle is to
minimize coupling.

Most coupling dependencies are directed - the coupling usually defines a client-supplier relationship
between the design elements. Therefore, it is useful to distinguish import coupling ("using", "fan-
out") and export coupling ("used", "fan-in"), which we discuss in the following.

Import coupling

Import coupling measures the degree to which an element has knowledge of, uses, or depends on
other design elements. High import coupling can have the following effects:

• Decreased maintainability: changes to the supplier may necessitate follow-up changes
(ripple effects) to the client.
The stability of the supplier is a factor to consider here. High coupling to elements that are
not likely to change is less harmful than coupling to "hot spots".

• Decreased understandability, increased fault-proneness: elements with high import coupling
operate in large context, developers need to know all the services the element relies on, and
how to use them.

• Decreased reusability: To reuse a class or package with high import coupling in a new
context, all the required services must also be made available in the new context.

Export coupling

Export coupling measures the degree to which an element is used by, depended upon, by other
design elements. High export coupling is often observed for general utility classes (e.g., for string
handling or logging services) that are used pervasively across all layers of the system. Thus, high
export coupling is not necessarily indicative of bad design.

Again, an important issue to consider here is stability. High export coupling elements that are likely
to change in the future can have a large impact on the system if the change affects the interface.
Therefore, high export classes should be reviewed for anticipated changes, to ensure that these
changes can implemented with minimal impact.

© 2002-2021. All rights reserved. 54

SDMetrics ® User Manual 6.2 Structural Design Properties

Empirical results

Coupling metrics have consistently been found to be good indicators of fault-proneness. It seems
worthwhile to investigate different dimensions of coupling: import and export coupling, different
coupling mechanisms, distinguishing coupling to COTS libraries and application-specific
classes/packages. Coupling metrics are suitable to identify design elements with high fault density.
Therefore, coupling metrics greatly help to identify small parts of a design that contain a large
number of faults.

6.2.3 Inheritance

Definition

Inheritance-related metrics are concerned with aspects such as

• depth/width of the inheritance graph
• number of ancestors/descendents of a design element
• inherited size
• polymorphism, method overriding, etc.

Impact on quality

Deep inheritance structures are hypothesized to be more fault-prone. The information needed to
fully understand a class situated deep in the inheritance tree is spread over several ancestor classes,
thus more difficult to overview.

Similar to high export coupling, a modification to a design element with a large number of
descendents can have a large effect on the system. Make sure the interface of the class is stable, or
that anticipated modifications can be added without affecting the inheritance hierarchy at large.

Empirical results

Empirical studies show that effects of the use of inheritance on system qualities such as fault-
proneness vary greatly. Depending on factors such as developer experience, system quality can
benefit or suffer from the use of inheritance, or be unaffected by it.

Thus, inheritance metrics should not be relied on for decision making before their impact on system
quality is not demonstrated in a given development environment. Extant inheritance metrics per se
are not suitable to distinguish proper use of inheritance from improper use.

Also, inheritance is not very frequently used in designs. Typically, only a small percentage of the
classes in a system will participate in inheritance relationships. As a consequence, inheritance-
related metrics tend to have low variance and are difficult to use (see Section 6.3.1 "Descriptive
Statistics").

© 2002-2021. All rights reserved. 55

SDMetrics ® User Manual 6.2 Structural Design Properties

6.2.4 Complexity

Definition

Complexity measures the degree of connectivity between elements of a design unit. Whereas size
counts the elements in a design unit, and coupling the relationships/dependencies leaving the design
unit boundary, complexity is concerned with the relationships/dependencies between the elements
in the design unit. For instance, counting the number method invocations among the methods within
one class can be considered a measure of class complexity, or the number of transitions between the
states in a state diagram.

Impact on quality

High complexity of interactions between the elements of a design unit can lead to decreased
understandability and therefore increased fault-proneness. Also, testing such design units is more
difficult.

Empirical results

In practice, complexity metrics are often strongly correlated with size measures. Large design units
that contain many design elements within are also more likely to have a large number of
connections between the design elements.

Thus, while complexity metrics are good indicators of qualities such as fault-proneness, they
provide no new insights in addition to size metrics.

6.2.5 Cohesion

Definition

Cohesion is the degree to which the elements in a design unit (package, class etc.) are logically
related, or "belong together". As such, cohesion is a semantic concept.

Cohesion metrics have been proposed which attempt to approximate this semantic concept using
syntactical criteria. Such metrics quantify the connectivity (coupling) between elements of the
design unit: the higher the connectivity between elements, the higher the cohesion.

Cohesion metrics often are normalized to have a notion of minimum and maximum cohesion,
usually expressed on a scale from 0 to 1. Minimum cohesion (0) is assumed when the elements are
entirely unconnected, maximum cohesion (1) is assumed when each element is connected to every
other element.

Not normalized metrics are based on counts of connections between design elements in a unit (e.g.,
method calls within a class). As such, not normalized metrics are conceptually similar to complexity
metrics.

© 2002-2021. All rights reserved. 56

SDMetrics ® User Manual 6.2 Structural Design Properties

Impact on quality

A low cohesive design element has been assigned many unrelated responsibilities. Consequently,
the design element is more difficult to understand and therefore also harder to maintain and reuse.
Design elements with low cohesion should be considered for refactoring, for instance, by extracting
parts of the functionality to separate classes with clearly defined responsibilities.

Empirical results

In practice, cohesion metrics are only of limited usefulness:

• Not normalized cohesion metrics often are strongly related to size metrics. This makes sense
since, as discussed in the section on size metrics, large classes or packages may in fact suffer
from low cohesion. Such cohesion metrics then are, of course, good quality indicators, but
they are redundant with size metrics - they provide no new information about the design
element.

• Normalized cohesion metrics do not consistently have a bearing on system qualities. I.e., we
cannot conclude from a high or low cohesion value that a class is, e.g., more or less fault-
prone. Either, the theoretical negative impact of low cohesion on system quality is not
always that critical in practice, or, the cohesion metrics simply fail to identify design
elements with unrelated responsibilities.

6.3 Data Analysis Techniques

In this section, we summarize a number of data analysis techniques that are useful in the context of
design measurement, and provide a "roadmap" to their use.

• Before starting with design measurement, be aware of your measurement goals. You do not
measure for the sake of measurement, but to help plan and control the development process,
and/or to improve the quality of the product. Design measurement can help here by
supporting effort estimation, monitoring progress, and identifying the areas in your design
where improvements are likely to have a high payoff.

• Review the set of design metrics for completeness - are there structural features of your
designs you deem important that SDMetrics does not yet cover? For instance, you may want
to include metrics to count certain stereotyped elements that have a special meaning in your
development environment (e.g., stereotypes to mark variation points in a reference
architecture of a product line). Use SDMetrics' flexibility to define new metrics.

• Use descriptive statistics (Section 6.3.1 "Descriptive Statistics") and techniques such as PCA
(Section 6.3.2 "Dimensional Analysis") to identify a minimal, nonredundant set of metrics
that is meaningful for your design practices.

• This reduced set of metrics can be used for class/package rankings to identify areas with
potential design problems (Section 6.3.3 "Rankings").

• Over time, you can build up a design measurement database and establish quality
benchmarks (Section 6.3.4 "Quality Benchmarks").

© 2002-2021. All rights reserved. 57

SDMetrics ® User Manual 6.3 Data Analysis Techniques

• In more mature organizations that regularly perform process measurement (fault tracking,
effort data), you can use design measurement for quality predictions (Section 6.3.5
"Prediction Models").

6.3.1 Descriptive Statistics

Descriptive statistics characterize the distribution of values for a design metric in terms of its mean
and median value, interquartile ranges, and variance (or standard deviation).

The range and distribution of a metric determines the applicability of subsequent analysis
techniques. Low variance metrics do not differentiate design elements very well and therefore are
not likely to be useful predictors. Descriptive statistics allow us to determine if the data collected
from two or more projects are comparable, stem from similar populations. If not, this information
will likely be helpful to explain different findings across projects.

SDMetrics calculates and displays descriptive statistics for design metrics, see Section 4.5 "The
View 'Histograms'" and Section 4.8 "The View 'Descriptive Statistics'".

6.3.2 Dimensional Analysis

In Section 6.2 "Structural Design Properties" we have noted that even though metrics have been
defined to capture different aspects of a software design, in practice they often are correlated with
each other. That is, they measure essentially the same thing - some of the metrics are redundant.

Redundant metrics provide no new design information. They can be discarded without loss of
information, and should be discarded to facilitate the use of measurement data for decision making.
Design measurement tools often come with a large set of metrics, and you should expect many of
metrics to be redundant. SDMetrics is no exception here.

The difficulty is that, depending on design practices used in a development environment, two
metrics may be redundant in one software system, but not in another. There is no such thing as a
canonical set of non-redundant metrics that captures all important design properties and is valid for
all systems. Therefore, SDMetrics opts for a rich set of metrics, to lower the risk of missing
important design aspects, at the prize of some redundancy among the metrics.

Techniques such as principal component analysis (PCA) can be used to identify and eliminate
redundant metrics. PCA is a standard technique to identify the underlying, orthogonal dimensions
(which correspond to properties that are directly or indirectly measured) that explain relations
between the variables in a data set. Examples of the application of PCA are demonstrated in
[BWDP00,BWL01].

Using a technique such as PCA within a few projects, you can identify a reduced set of largely
orthogonal metrics for your development environment.

© 2002-2021. All rights reserved. 58

SDMetrics ® User Manual 6.3 Data Analysis Techniques

6.3.3 Rankings

Most metrics have an underlying hypothesis of the form: the higher the measurement value (e.g.,
size, import coupling), the stronger the negative impact on quality (fault-proneness, effort,
maintainability). Therefore, when considered in isolation, design metrics only allow relative
statements about the system quality, e.g. "package A displays stronger coupling than package B,
therefore, package A is more likely to suffer from quality problems than package B."

An admissible interpretation is therefore to sort the model elements by a metric, and review the
design of the model elements with the highest values: Are those high values justified, should the
model element be considered critical?

There is no definitive answer to the question how many elements to choose for review from the top
of the sorted list. One strategy could be to select so-called "outliers". Another strategy could be to
select a certain number or percentage of model elements from the top, based on available resources
for reviewing.

SDMetrics supports this kind of interpretation of measurement data. The histograms in the metric
view allow you to visually identify outliers (Section 4.5 "The View 'Histograms'"). In the table
view, you can sort the elements by a metric, and highlight elements in the upper percentiles for a
metric (Section 4.4 "The View 'Metric Data Tables'").

What about thresholds?

One recurring suggested use of design metrics is that they can be used to build simple quality
benchmarks based on thresholds. If a design metric exceeds a certain threshold, the design element
is either rejected and must be redesigned, or at least flagged as "critical". It is difficult to imagine
why a threshold effect would exist between, for example, size metrics and fault-proneness. This
would imply a sudden, steep increase in fault-proneness in a certain size value range, something that
would be difficult to explain. Also, empirical data does not support this idea [BEGR00].

6.3.4 Quality Benchmarks

The idea of benchmarks is to compare structural properties of a design with properties of previous
system designs that are 'known to be good' and have stood the test of time. To this end,
measurement values for selected design metrics obtained from previously developed, successful
designs are stored in a database. If a new or modified design is to be evaluated, the same
measurements are applied. Then, the distribution of each design metric is compared to the
distribution of these metrics stored in the database.

As an example, Figure 31 shows a (fictitious) distribution of the number of operations invoked from
within a class. The vertical axis indicates, for each value on the horizontal axis (number of invoked
operations), the percentage of classes that have that particular value. In the example, the distribution
of the new classes follows closely the distribution of the benchmark, except for values 7 and 8,
which occur more frequently. Such deviations from expected distributions pinpoint potential risk
areas. These areas could then be inspected to verify whether such a deviation is justified, or if a
redesign of that part should be considered.

© 2002-2021. All rights reserved. 59

SDMetrics ® User Manual 6.3 Data Analysis Techniques

Figure 31: Benchmarking

The example also illustrates why the examination of distributions provides more information than
simply defining thresholds for each metric that are not to be exceeded. In the example, the number
of invoked operations is not exceedingly high for the candidate design - the benchmark suggests 10
as an upper value. A simple threshold test would have missed the potential design problem for the
cluster of classes with 7 and 8 operation calls.

6.3.5 Prediction Models

Prediction models try to estimate the future quality of a system from internal quality attributes that
are measurable at present. This is achieved by empirically exploring the relationships between
internal and external quality from systems developed in the past, and applying these findings to new
systems.

In the following, we describe how to build and use a prediction model for class fault-proneness
from the structural properties of a class. Figure 32 depicts the steps involved in building the
prediction model.

The starting point is a system design that has been created in the past. We apply SDMetrics to the
design to obtain structural properties data for the classes in the design, collected from the various
diagram types (class, object, collaboration, sequence, and state diagrams). In addition, fault data
(e.g., from inspections, testing, or post-release faults) has to be collected and the faults per class
recorded.

© 2002-2021. All rights reserved. 60

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

Benchmark

Candidate

invoked operations

cl

as
se

s
(%

)

SDMetrics ® User Manual 6.3 Data Analysis Techniques

Figure 32: Building a Prediction Model

We now have a set of classes enriched with structural properties data and fault data. On this data set
we perform a statistical analysis (e.g. classification or regression analysis) to identify relationships
between fault data and structural properties. The result of this analysis is a prediction model, e.g., in
the form of a regression equation. The prediction model computes a predicted fault-proneness or
predicted number of faults from the structural properties of a class. This model can be used to make
predictions for new classes, as depicted in Figure 33.

The starting point in applying the prediction model is a new design candidate. We apply SDMetrics
to this design to again obtain the structural properties measurement data for the classes. This data is
then fed into the prediction model. Using the now known relationship between the structural
properties and faults, the prediction model calculates, for instance, for each class a probability that a
fault will be found in the class upon inspection.

Figure 33: Using the Prediction Model

The output of the prediction model is useful for decision-making. For instance, we may decide that
for classes with a high predicted fault-proneness, say, above 25%, the class design shall undergo
quality assurance (QA) activities such as inspections, extensive unit testing etc. Or, we may rank the

© 2002-2021. All rights reserved. 61

SDMetrics ® User Manual 6.3 Data Analysis Techniques

classes by their predicted fault-proneness, and select the highly fault-prone classes from the top of
the list for QA activities, until the allocated resources for QA are depleted.

Thus, the effort for QA activities can be focused on the classes that are more likely to contain faults.
The benefits are manifold:

• effectiveness of QA increases,
• system quality increases as more faults are found,
• development cost decreases as faults are found earlier when they are cheaper to repair.

Note: what kind of prediction the model makes - e.g., predicted number of faults, or the likelihood a
fault is found in a class during inspection, testing, or post-release - depends on the statistical
analysis techniques used, and the type of fault data from which the model is built.

Prediction models for other system qualities can be built in the same way, for example, models to
predict implementation and test effort from design size.

The advantage of using prediction models is that they provide a mapping from hard-to-interpret
design measurement data ("size=12, coupling=7, ...") to easily interpreted external quality data
("predicted fault-proneness of class X: 78%", "predicted effort to implement package Y: 104 person
hours"). The result is an absolute, quantitative statement (within certain error bars) about the
external quality of a system, expressed in the same unit in which the external quality is measured.

Also, prediction models address the problem that a complex system quality attribute such as fault-
proneness is influenced by many factors - various dimensions of size, coupling and so on.
Approaches such as quality benchmarks, which investigate one design metric at a time to
characterize fault-proneness, fail to take the combined effect of all factors into account. Prediction
models provide a sound method to combine these multiple factors into one cohesive model.

Empirical evidence shows that highly accurate prediction models can be built from structural
properties, and that they are beneficial in highlighting trouble areas, as well as in supporting project
planning and steering [BWDP00, BWL01, BMW02, CK98, NP98, LH93].

© 2002-2021. All rights reserved. 62

SDMetrics ® User Manual 7 SDMetrics Metamodel and XMI
Transformation Files

7 SDMetrics Metamodel and XMI
Transformation Files
To define and calculate design metrics, SDMetrics needs to know what types of design elements are
present in a UML design, and what are their interrelationships. The UML, standardized by the
Object Management Group (OMG), has a well-defined metamodel, based on the Meta Object
Facility (MOF™), also a standard of the OMG.

XMI (the XML Metadata Interchange format), yet another standard of the OMG, is a mechanism to
create a textual (XML) representation of models based on the MOF, such as the UML. XMI defines
a set of production rules that prescribe how to serialize the elements of a model to XML, and how to
generate a DTD or schema for the XML files thus generated. However, this standard is not
immediately suitable for the definition of design metrics for a number of reasons:

• Different versions of the XMI exist, which yield different representations of UML models.
At the time of this writing, XMI versions 1.2, 2.0, and 2.1 are widely used, and XMI 1.0 and
1.1 are still around, too, though less frequently used.

• The XMI DTDs or schemas for UML are huge (e.g., the XMI 1.2 DTD for UML1.4 has over
110 pages), which is too unwieldy for the purpose of defining metrics.

• In practice, tool vendors do not always fully adhere to the UML and XMI standards, they
often deviate in minor (and sometimes not so minor) ways. This is one cause why, in
practice, tool interoperability via XMI exchange does not always work as intended.

SDMetrics therefore uses a reduced and simplified 'metamodel for the UML'. This metamodel
defines the UML elements that SDMetrics knows about, and contains all the relevant information to
calculate metrics. This simplified metamodel also abstracts from the various versions of the XMI
that are used to represent UML designs. To support a specific version of the XMI, we need to define
a mapping of SDMetrics metamodel elements onto the XMI elements for the given version of the
XMI. SDMetrics stores these mappings in "XMI transformation files".

When would I need to worry about all this?

Knowledge of the SDMetrics metamodel is needed if you want to define new metrics or rules of
your own (see Section 8 "Defining Custom Design Metrics and Rules"). The metric and rule
definitions make copious references to the elements and relationships defined in the metamodel.

In addition, knowledge of XMI transformation files is needed if

• an XMI exporter you use does not fully comply with the XMI standard or official UML
metamodels, and you need to modify the XMI transformations files to account for this,

• you want to define new metrics that take proprietary and/or tool-specific XMI extensions
into account. For instance, the representation of UML diagram layout information is not
standardized in UML 1.x, and tool vendors usually define proprietary extensions to store this
information. You can extend the SDMetrics metamodel and modify the XMI transformation
files for such XMI extensions, and define metrics for them.
(Note: since XMI is not limited to the representation of UML models, but any models based

© 2002-2021. All rights reserved. 63

SDMetrics ® User Manual 7 SDMetrics Metamodel and XMI
Transformation Files

on the MOF, it is possible to write SDMetrics metamodels and XMI transformation files for
other MOF-based metamodels, and define metrics to perform measurements on these
models.)

7.1 SDMetrics Metamodel

The SDMetrics metamodel defines which UML model elements types (e.g., classes, packages,
associations, and so on) SDMetrics knows about, and what information is stored with each UML
model element. This information provides the basis for the definition and calculation of design
metrics.

The SDMetrics metamodel is defined in an XML file of the following structure (for a formal
definition, see Appendix E: "Project File Format Definitions"):

<sdmetricsmetamodel version="2.0" >
 <modelelement name="element1">
 <attribute name="attr1" type="data" multiplicity="one" />
 <attribute name="attr2" type="ref" multiplicity="many" />
 ..
 </modelelement>
 <modelelement name="element2" parent="element1">
 <attribute name="attr3" type="extref" multiplicity="one" />
 ...
 </modelelement>
 ...
</sdmetricsmetamodel>

The metamodel definition file is a list of metamodel element definitions enclosed in
<sdmetricsmetamodel> tags. The attribute "version" indicates the version number of the
oldest version of SDMetrics with which the file can be used.

A metamodel element definition is enclosed in <modelelement> tags. The required attribute
name specifies the name of the metamodel element (e.g., class, operation etc). The optional
attribute parent specifies a parent metamodel element; the inheritance mechanism will be
explained at the end of the section. Stored with each metamodel element is a set of metamodel
attributes representing data fields and cross-references to other model elements. These are specified
in a list of <attribute> definitions. We distinguish data attributes, cross-reference attributes,
and extension references.

• Data attributes store a piece of data for a model element, e.g., the name of a class, the
visibility of an operation.

• Cross-reference attributes store a reference to another model element, e.g., the type of an
attribute, the recipients of a message.

• Extension references are a special type of cross-reference attributes used for UML
extensions via profiles. Section 8.7 "Defining Metrics for Profiles" describes how to use
extension references in detail.

© 2002-2021. All rights reserved. 64

SDMetrics ® User Manual 7.1 SDMetrics Metamodel

We also distinguish single-valued and multi-valued attributes:

• Single-valued attributes only store a single data item or model element reference,
• Multi-valued attributes store a set of data items or model element references.

An <attribute> definition has three XML attributes:

• name (required): Indicates the name of the metamodel attribute.
• type (optional): Takes value "data" for data attributes, "ref" for cross-reference attributes,

and "extref" for extension references. The default value is "data".
• multiplicity (optional): Takes value "one" for single-valued attributes, "many" for

multi-valued attributes. The default value is "one".

For example, the definition of the metamodel element "operation" is as follows:

<modelelement name="operation">
 <attribute name="id" />
 <attribute name="name" />
 <attribute name="context" type="ref" />
 <attribute name="visibility" />
</modelelement>

An operation has four single-valued attributes: data attributes id, name, and visibility, and
cross-reference attribute context. In the example, the meaning of the attributes is as follows:

• name is the name of the operation in the UML design,
• id is the XMI identifier of the operation, which is used in the XMI file to reference the

operation,
• visibility indicates if the operation is public, private, etc.
• context is a reference to the owner of the operation (e.g., a class, an interface, or a use

case).

These attribute meanings are not expressed in the metamodel definition. It is the job of an XMI
transformation file (see Section 7.2 "XMI Transformation Files") to retrieve the intended
information for each model element and attribute from an XMI file.

Note that extension reference attributes must be single-valued. A metamodel element can have at
most one extension reference attribute.

Metamodel inheritance

To simplify the specification of metamodels, a metamodel element may inherit the attributes of
another metamodel element. The parent metamodel element is specified via the parent attribute in
the metamodel element definition:

<modelelement name="element2" parent="element1">
 <!-- additional attributes of element2 (optional) -->
</modelelement>

In the example, an instance of model element "element2" has all attributes of "element1", and
possibly additional attributes.

© 2002-2021. All rights reserved. 65

SDMetrics ® User Manual 7.1 SDMetrics Metamodel

By default, all metamodel elements inherit from a special metamodel element named
sdmetricsbase, which must be defined explicitly in every metamodel definition file. In the
default metamodel that is shipped with SDMetrics, the sdmetricsbase element defines the
attributes "id", "name", and "context" which all elements must possess. See Appendix A:
"Metamodels" for a list of all metamodel elements and a description of their attributes.

Note that parent model elements must be defined before any of their child elements in the
metamodel definition file. Consequently, the "sdmetricsbase" model element must be the first one
defined in the file.

If the parent model element defines an extension reference attribute, the child model elements
inherit the extension reference and therefore cannot define new extension references of their own.

7.2 XMI Transformation Files

In Section 7.1 "SDMetrics Metamodel", we have seen how to specify SDMetrics metamodels. For
each metamodel element, we can define data attributes and cross-reference attributes to other model
elements. An XMI transformation file specifies how to retrieve the information pertaining to each
SDMetrics metamodel element and its attributes from the XMI file.

7.2.1 XMI Transformation File Format

An XMI transformation file is an XML file of the following format (see Appendix E: "Project File
Format Definitions" for a formal definition):

<xmitransformations version="2.0" >
 <xmitransformation ...xmitransformation attributes... />
 <trigger ...trigger attributes... />
 <trigger ...trigger attributes... />
 ...
 </xmitransformation>
 <xmitransformation ...xmitransformation attributes... />
 <trigger ...trigger attributes... />
 ...
 </xmitransformation>
 ...
</xmitransformations>

The transformation file defines a list of xmitransformation elements, each of which has a list
of triggers. Each xmitransformation element provides XMI information for one SDMetrics
metamodel element, each trigger provides XMI information for one attribute of the metamodel
element.

The root element xmitransformations encloses the list of XMI transformations. The
"version" attribute (required) indicates the version number of the oldest version of SDMetrics with
which the XMI transformation file can be used.

© 2002-2021. All rights reserved. 66

SDMetrics ® User Manual 7.2 XMI Transformation Files

7.2.2 XMI Transformations and Triggers

To illustrate how to define XMI transformations and triggers, we consider again the example of
"operation" metamodel elements in Section 7.1 "SDMetrics Metamodel". An operation model
element has four attributes: an id, a name, a context (operation owner), and a visibility.

Below is the representation of an operation as expressed in an XMI 1.0 file. The places that contain
information we are interested in are set in boldface:

<Foundation.Core.Operation xmi.id="xmi.1632">
 <!-- 1. operation id -->
 <Foundation.Core.ModelElement.name>printStackTrace
 <!-- 2. operation name -->
 </Foundation.Core.ModelElement.name>
 <Foundation.Core.ModelElement.visibility xmi.value="public"/>
 <!-- 3. operation visibility -->
 <Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
 <Foundation.Core.Feature.ownerScope xmi.value="instance"/>
 <Foundation.Core.BehavioralFeature.isQuery xmi.value="false"/>
 <Foundation.Core.Operation.isAbstract xmi.value="false"/>
 <Foundation.Core.Feature.owner>
 <Foundation.Core.Classifier xmi.idref="xmi.1605"/>
 <!-- 4. operation context -->
 </Foundation.Core.Feature.owner>
 ...
</Foundation.Core.Operation>

The following XMI transformation describes how the required information is retrieved from an
XMI 1.0 document:

<xmitransformation modelelement="operation"
 xmipattern="Foundation.Core.Operation" recurse="true">
 <trigger name="id" type="attrval" attr="xmi.id" />
 <trigger name="name" type="ctext" src="Foundation.Core.ModelElement.name" />
 <trigger name="visibility" type="cattrval"
 src="Foundation.Core.ModelElement.visibility" attr="xmi.value"/>
 <trigger name="context" type="gcattrval"
 src="Foundation.Core.Feature.owner" attr="xmi.idref"/>
</xmitransformation>

The XMI transformation is enclosed within the xmitransformation tags. The opening tag
takes the following attributes:

• attribute modelelement (required): the SDMetrics metamodel element for which this
transformation is defined. In our case, it's the operation.

• attribute xmipattern (required): the XMI element that represents our UML element. In
XMI 1.0, operations are specified with the XMI element "Foundation.Core.Operation"

• attribute recurse (optional): is set to true if the model element can serve as context for
subelements. In our case, operations can have parameters as subelements, so we set the
attribute to true (the XMI transformation for parameters is taken care of in a separate XMI
transformation).

• attributes requirexmiid and allowxmiidref (optional): used to extract information
from XMI elements that have no XMI ID of their own. We'll discuss these attributes in
Section 7.2.3.5 "Optional XMI ID".

© 2002-2021. All rights reserved. 67

../../dist/web/manual/OptionalID.html

SDMetrics ® User Manual 7.2 XMI Transformation Files

• attribute condition (optional): specify a condition for the attributes of the XMI element
that must be fulfilled for this XMI transformation to become effective. Conditional XMI
transformations will be discussed in Section 7.2.3.6 "Conditional XMI Transformations".

Each trigger in our transformation describes how to retrieve the information for one SDMetrics
metamodel attribute. Each trigger has two required attributes:

• attribute type: indicates how the trigger retrieves information from the XMI file. The type
can be one of the following: attrval, ctext, cattrval, gcattrval, constant, ignore, and
xmi2assoc.

• attribute name: the name of the SDMetrics metamodel attribute to which this trigger
pertains. In the above example, each trigger refers to exactly one attribute of the operation
metamodel element: id, name, visibility, context.

The meaning of the remaining attributes is dependent on the trigger type. We describe each trigger
type in following.

7.2.2.1 Trigger Type "attrval"

This trigger instructs SDMetrics to retrieve the value from an XMI attribute of the XMI element
that represents the metamodel element. In our example, the "id" information is stored in the attribute
"xmi.id" of the Foundation.Core.Operation element. We retrieve its value with the trigger

<trigger name="id" type="attrval" attr="xmi.id" />

The "attr" attribute of the trigger indicates the XML attribute we are interested in. In most cases,
XML attributes only store single values. Exceptions are element references. For example, a partition
("swimlane") in an UML1.x activity graph may be serialized in XMI1.2 as follows:

<UML:Partition name="mySwimlane" xmi.id="xmi12" contents="xmi35 xmi61 xmi115" />

The XML attribute "contents" contains the XMI IDs of the states of the partition, separated by
spaces. In the SDMetrics metamodel, the model element "partition" has a multi-valued attribute
"contents" (see Appendix A.1 "Metamodel for UML 1.3/1.4"). With the trigger

<trigger name="contents" type="attrval" attr="contents" />

SDMetrics will extract each part of the XML attribute, and store it as separate value in the multi-
valued SDMetrics metamodel attribute.

© 2002-2021. All rights reserved. 68

SDMetrics ® User Manual 7.2 XMI Transformation Files

7.2.2.2 Trigger Type "ctext"

This trigger retrieves the value from the text enclosed by a child element in the XMI tree.
In our example, the name of the operation is stored as text enclosed in the
Foundation.Core.ModelElement.name element. With the trigger

<trigger name="name" type="ctext" src="Foundation.Core.ModelElement.name" />

we retrieve the value for attribute "name" from the text enclosed within the
Foundation.Core.ModelElement.name tags. The child element is specified via the "src" attribute of
the trigger.

7.2.2.3 Trigger Type "cattrval"

This trigger retrieves the value from an XMI attribute of a child element in the XMI tree.
In our example, the visibility information of the operation is stored in the attribute "xmi.value" of
the child element "Foundation.Core.ModelElement.visibility". We retrieve its value with the trigger

<trigger name="visibility" type="cattrval"
 src="Foundation.Core.ModelElement.visibility" attr="xmi.value"/>

The "src" and "attr" attributes of the trigger specify the element/attribute we are interested in.

We can also use this trigger for multi-valued attributes. For example, a partition in a UML2 activity
may be serialized in XMI2.0 as follows:

<group xmi:type='UML:ActivityPartition' name='mySwimlane' xmi:id='xmi12'>
 <containedNode xmi:idref='xmi35'/>
 <containedNode xmi:idref='xmi61'/>
 <containedNode xmi:idref='xmi115'/>
</group>

In the SDMetrics metamodel for UML2, the model element "activitygroup" that stores partitions
has a multi-valued attribute "nodes" (see Appendix A.2 "Metamodel for UML 2.x"). With the
trigger

<trigger name="nodes" type="cattrval" src="containedNode"
 attr="xmi:idref" />

SDMetrics will pick up each "containedNode" child XML element, and store the values of their
"xmi:idref" attributes in the multi-valued SDMetrics metamodel attribute "nodes" of the activity
partition.

7.2.2.4 Trigger Type "gcattrval"

This trigger retrieves the value from an XMI attribute of a child of a child ("grand child") in the
XMI tree.
In our example, the owner of the operation is specified in the child element
Foundation.Core.Feature.owner. This child element has another child element of its own, whose

© 2002-2021. All rights reserved. 69

SDMetrics ® User Manual 7.2 XMI Transformation Files

attribute "xmi.idref" holds the reference to the operation owner. We retrieve its value with the
trigger

<trigger name="context" type="gcattrval"
 src="Foundation.Core.Feature.owner" attr="xmi.idref"/>

The "src" attribute of the trigger specifies the child element name, the "attr" attribute of the trigger
specifies the attribute of the grandchild element we want to access. Note that we do not specify the
element name of the grandchild. For single-valued attributes such as "context", the trigger always
accesses the first child of the specified child element, regardless of its name.

We can also use the trigger for multi-valued attributes. Revisiting the example of UML1.x activity
partitions from Section 7.2.2.1 "Trigger Type "attrval"", an XMI1.2 exporter can also serialize
swimlanes as follows:

<UML:Partition' name='mySwimlane' xmi.id='xmi12'>
 <UML:Partition.contents>
 <UML:ModelElement xmi.idref='xmi35'/>
 <UML:ModelElement xmi.idref='xmi61'/>
 <UML:ModelElement xmi.idref='xmi115'/>
 </UML:Partition.contents>
</UML:Partition>

The trigger

<trigger name="contents" type="gcattrval"
 src="UML:Partition.contents" attr="xmi.idref"/>

will visit each child XML element of the UML:Partition.contents element, and store the
values of their "xmi.idref" attributes in the multi-valued attribute "contents" of SDMetrics'
"partition" metamodel element.

The "gcattrval" trigger has one more function that is not related to extracting values from XML
attributes. If a model element is defined as child element of the XML element specified by the
trigger's "src" attribute, the trigger will store a cross-reference to that model element with the
attribute for which the trigger is defined. Consider the following example of entry and exit actions
of a state in UML1.4:

<UML:SimpleState xmi.id = 'id127' name = 'full'>
 <UML:State.entry>
 <UML:CallAction xmi.id = 'id128' name = 'anon' isAsynchronous = 'false'>
 ...
 </UML:CallAction>
 ... (more entry actions)
 </UML:State.entry>
 <UML:State.exit>
 <UML:CallAction xmi.id = 'id129' name = 'anon' isAsynchronous = 'false'>
 ...
 </UML:CallAction>
 </UML:State.entry>
 ...
</UML:SimpleState>

The entry and exit actions are defined as child elements of the UML:State.entry and
UML:State.exit elements. The "state" element of SDMetrics' metamodel for UML1.x has two

© 2002-2021. All rights reserved. 70

SDMetrics ® User Manual 7.2 XMI Transformation Files

multi-valued cross-reference attributes "entryaction" and "exitaction". For these, we define the
following triggers:

<xmitransformation modelelement="state" xmipattern="UML:SimpleState"
 recurse="true">
 <trigger name="entryaction" type="gcattrval" src="UML:State.entry"
 attr="xmi.idref" />
 <trigger name="exitaction" type="gcattrval" src="UML:State.exit"
 attr="xmi.idref" />
...
</xmitransformation>

With these triggers, SDMetrics will store cross-references to the model elements defined as children
of the UML:State.entry and UML:State.exit XML elements in the "entryaction" and
"exitaction" attributes of SDMetrics model element "state", respectively. Note that the values of the
"attr" attributes of the triggers play no role in this.

7.2.2.5 Trigger Type "constant"

This trigger instructs SDMetrics to insert a constant value for an attribute. For example, the
SDMetrics metamodel differentiates the types of states (simple, initial, final, etc.) in a state diagram
with an attribute "kind" of the metamodel element "state". Consider the following excerpt of the
XMI transformations for UML simple states and final states:

<xmitransformation modelelement="state"
 xmipattern="Behavioral_Elements.State_Machines.SimpleState">
 ...
 <trigger name="kind" type="constant" attr="simple"/>
</xmitransformation>

<xmitransformation modelelement="state"
 xmipattern="Behavioral_Elements.State_Machines.FinalState">
 ...
 <trigger name="kind" type="constant" attr="final"/>
</xmitransformation>

The "attr" attribute specifies the value to be inserted for the metamodel attribute ("simple" for
SimpleState, "final" for FinalState).

7.2.2.6 Trigger Type "ignore"

This trigger leaves the attribute value empty. This is useful if you wish to override the triggers of an
inherited attribute that is not meaningful for a particular metamodel element (Section 7.2.3.4
"Inherited Attributes and Triggers" describes the trigger inheritance mechanism). For example,
every UML design has a root element "Model" that provides the context for all other design
elements in the model. The "Model" element itself, however, has no owner or context. Hence, the
XMI transformation for "Model" leaves the value for the required attribute "context" empty:

<xmitransformation modelelement="model" xmipattern="Model_Management.Model">
 ...
 <trigger name="context" type="ignore" />
</xmitransformation>

© 2002-2021. All rights reserved. 71

SDMetrics ® User Manual 7.2 XMI Transformation Files

A trigger of type "ignore" requires no further attributes.

7.2.2.7 Trigger Type "xmi2assoc"

The "xmi2assoc" trigger is specifically defined to process serializations of associations and
aggregations in XMI 2.x.

Composite aggregations in XMI 2.x

In XMI 2.x, the elements that play the parts in composite aggregations between metamodel
elements are serialized in such a way that their types are not specified explicitly in the XMI file. For
example, the type "Class" in the UML2 metamodel has a composite 1:n aggregation to the type
"Property". The role name for the parts is "ownedAttribute". A class named "aClass" with two
attributes "attr1" and "attr2" is serialized as follows:

<uml:Model xmi:version="2.0" xmi:id="xmi.1" name='aModel'
 ...
 <ownedMember xmi:type='uml:Class' xmi:id='xmi.42' name='aClass'>
 <ownedAttribute xmi:id='xmi.43' name='attr1' type='xmi.2001'/>
 <ownedAttribute xmi:id='xmi.44' name='attr2' type='xmi.1138'/>
 </ownedMember>
 ...
</UML:Model>

The name of the XML elements defining the attributes "attr1" and "attr2" is the role name
"ownedAttribute" of the aggregation in the metamodel. We need to provide SDMetrics with the
information that "ownedAttribute" associates classes with elements of type "Property". This can be
done with the "xmi2assoc" trigger as follows:

<xmitransformation modelelement="class" xmipattern="uml:Class">
 <trigger name="properties" type="xmi2assoc" attr="ownedAttribute"
 src="uml:Property"/>
 ...
</xmitransformation>

<xmitransformation modelelement="property" xmipattern="uml:Property">
 ...
</xmitransformation>

The attribute "attr" of the trigger specifies the role name of the aggregation that is also the name of
the XML element defining the part. The attribute "src" specifies the XMI pattern of the XMI
transformation that should be used to process the part definition. The attribute "name" specifies the
name of the (multi-valued) SDMetrics metamodel cross-reference attribute that stores the
reference(s) to the part(s).

If a part is a subtype of the associated class, the XMI exporter must indicate the type of the part with
the "xmi:type" attribute. If such a type is specified, SDMetrics will of course use the XMI
transformations defined for that type.

The "src" attribute is optional if the type of the parts in the UML2 metamodel is abstract. In that
case, the concrete type of the part must always be indicated in the XMI file with the xmi:type
attribute. In the example above, the UML2 metamodel class "Model" has a composite aggregation

© 2002-2021. All rights reserved. 72

SDMetrics ® User Manual 7.2 XMI Transformation Files

with the abstract class "PackageableElement"; the role name of the parts is "ownedMember". The
following XMI transformation collects all members of the model:

<xmitransformation modelelement="model" xmipattern="uml:Model">
 <trigger name="members" type="xmi2assoc" attr="ownedMember" />
</xmitransformation>

Associations in XMI 2.x

The "xmi2assoc" trigger can also be used to capture plain associations that are not aggregations. For
example, the UML2 metamodel class "InstanceSpecification" has an association with class
"Classifier", the role name is "classifier". To serialize an instance specification with several
classifiers, an XMI exporter has two options:

<!-- first option: -->
<ownedMember xmi:type='uml:InstanceSpecification' xmi:id='xmi.42'
 name='myInstance'>
 <classifier xmi:idref='xmi.43'/>
 <classifier xmi:idref='xmi.44'/>
</ownedMember>

<!-- second option: -->
<ownedMember xmi:type='uml:InstanceSpecification' xmi:id='xmi.42'
 name='myInstance' classifier='xmi.43 xmi.44'/>

The following XMI transformation will handle both options with one trigger:

<xmitransformation modelelement="instancespec"
 xmipattern="uml:InstanceSpecification">
 <trigger name="classifiers" type="xmi2assoc" attr="classifier" />
</xmitransformation>

Here we assume that the SDMetrics metamodel type "instancespec" has a multi-valued cross-
reference attribute "classifiers" that stores the references to the classifiers of the instance
specification.

7.2.3 Tips on Writing XMI Transformations

Now that we have explained XMI transformations and triggers, we conclude with some useful tips
for writing XMI transformations.

7.2.3.1 The "linkbackattr" Trigger Attribute

Whenever a cross-reference is established from a model element e1 to a model element e2 via a
cross-reference attribute, you can optionally store a cross-reference back from e2 to e1.

If we take again the example of states in UML1.x activity partitions, we could add a cross-reference
attribute "inPartition" to metamodel element "state", and populate that attribute with information in
which partition a state lies as follows:

<xmitransformation modelelement="activitygraph" xmipattern="UML:ActivityGraph">
<trigger name="contents" type="attrval" attr="contents"

© 2002-2021. All rights reserved. 73

SDMetrics ® User Manual 7.2 XMI Transformation Files

 linkbackattr="inPartition"/>
<trigger name="contents" type="gcattrval" src="UML:Partition.contents"
 attr="xmi.idref" linkbackattr="inPartition" />
</xmitransformation>

The semantic of the "linkbackattr" is as follows. When a trigger retrieves information for a cross-
reference attribute (such as "contents" for partitions), we check if the referenced element has a
cross-reference attribute of the name specified by the "linkbackattr" (i.e., attribute "inPartition" that
we defined for states). If so, we set the value of that attribute to point back to the referencing model
element (the partition containing the state).

7.2.3.2 Multiple Triggers per Attribute

It is possible to specify multiple triggers for one attribute or relation. For example, in XMI1.1 and
XMI1.2, most model element information can be specified either via XML attributes or via XML
elements. For instance, the name of a class can be specified like this:

<UML:Class xmi.id="cls1" name="Rectangle" />

or like this:

<UML:Class xmi.id="cls1">
 <UML:ModelElement.name>Rectangle</UML:ModelElement.name>
</UML:Class>

Therefore, the XMI transformations for these XMI versions have two triggers for most attributes,
one trigger for each option. In the above example, the triggers to retrieve the class names are:

<xmitransformation modelelement="class" xmipattern="UML:Class">
 <trigger name="name" type="attrval" attr="name" />
 <trigger name="name" type="ctext" src="UML:ModelElement.name" />
 ...
</xmitransformation>

Multiple triggers are also useful to support modeling tools that deviate in minor ways from the
UML standards. For example, some modeling tools denote the parent/child elements in a UML1.x
generalization by "supertype" and "subtype", instead of the proper "parent" and "child". In many
cases, you can simply add a trigger for the nonstandard way of representing the attribute, and a
single XMI transformation file is thus capable of handling various XMI exporters.

7.2.3.3 "Context" Attribute Defaults

Some XMI exporters do not explicitly specify the owner of an element using the appropriate XMI
element (e.g., a link from an operation back to the class to which it belongs). Instead, ownership is
implied: the owner is the parent element in the XMI tree. Therefore, when the trigger(s) for attribute
"context" retrieve no information for a model element, SDMetrics inserts the parent element in the
XMI tree as the owner of the element.

© 2002-2021. All rights reserved. 74

SDMetrics ® User Manual 7.2 XMI Transformation Files

7.2.3.4 Inherited Attributes and Triggers

A metamodel element can inherit attributes from a parent metamodel element. When defining XMI
transformations, the child metamodel element automatically inherits the triggers that are defined for
the parent's attributes. Therefore, you do not need to define triggers for inherited attributes, but only
for the additional attributes of a metamodel element.

If you define a trigger for an inherited attribute, all inherited triggers for that attribute are
overridden, and only the newly defined trigger(s) for that attribute are used for the child element.

Special care needs to be taken if there are multiple xmitransformations defined for the parent
metamodel element. In that case, one xmitransformation is chosen arbitrarily to determine
the inherited triggers for the child metamodel element. Therefore, you have to make sure that any of
the possible xmitransformations is suitable to provide the inherited triggers for the child.
Otherwise, explicitly provide the proper definitions of all triggers for the child metamodel element.

7.2.3.5 Optional XMI ID

When SDMetrics reads an XMI file, a UML model element is recognized only if its XML element
in the XMI source file has an XMI ID, specified by the XML attribute "xmi.id" or "xmi:id". This
should be the normal behavior. However, some XMI exporters do not endow all UML model
elements with XMI IDs. For such cases, you can specify that an xmitransformation should be
applied even if the XML element has no XMI ID:

<xmitransformation modelelement="taggedvalue" xmipattern="UML:TaggedValue"
 requirexmiid="false">
 <trigger name="tag" ...
 ...
</xmitransformation>

If attribute "requirexmiid" is set to "false", SDMetrics recognizes XML elements which have no
XMI ID, as long as the XML element specifies no XMI IDREF cross reference either (attribute
"xmi.idref" or "xmi:idref"). This is necessary because XMI 1.x exporters frequently serialize
element cross references in a way that would otherwise trigger the creation of a new, unwanted, and
empty UML model element for each such cross reference.

On rare occasions, you may need to extract information from XML elements that have no XMI ID
but do have an XMI IDREF. You can achieve this with the optional attribute "allowxmiidref" as
follows:

<xmitransformation modelelement="eaextensionelement" xmipattern="element"
 requirexmiid="false" allowxmiidref="true">
 <trigger name="elementref" type="attrval" attr="xmi:idref" />
 <trigger name="name" ... />
 ...
</xmitransformation>

By default, "requirexmiid" is "true" and "allowxmiidref" is "false".

© 2002-2021. All rights reserved. 75

SDMetrics ® User Manual 7.2 XMI Transformation Files

7.2.3.6 Conditional XMI Transformations

The XMI transformations we have discussed so far were unconditional: they are used whenever an
XMI element matching the transformation's XMI pattern is encountered.

It is possible to make the use of an XMI transformation conditional. You may specify a condition
for the attributes of the XMI element that must be fulfilled for a XMI transformation to become
effective. With this feature, you can filter certain XMI elements, or you can conditionally map one
XMI element onto different metamodel element types, depending on the values of its attributes.

For example, the MagicDraw™ UML modeling tool uses a proprietary XMI extension to encode
diagram information as follows:

<mdElement elementClass = 'DiagramData' xmi.id = 'ID2546'>
 <parentID xmi.idref = 'ID0002' />
 <type>Class Diagram</type>
 <mdElement elementClass = 'DiagramView' xmi.id = 'ID2547'>
 <elementID xmi.idref = 'ID2546' />
 <zoomFactor xmi.value = '1.0' />
 <mdOwnedViews>
 <mdElement elementClass = 'ClassView' xmi.id = 'ID2548'>
 <elementID xmi.idref = 'ID00dd' />
 <geometry>165, 16, 358, 60</geometry>
 </mdElement>
 <mdElement elementClass = 'ClassView' xmi.id = 'ID2549'>
 <elementID xmi.idref = 'ID15f2' />
 <geometry>40, 170, 600, 111</geometry>
 </mdElement>
 ...

The XML element mdElement represents both diagrams and diagram elements, indicated by the
value of attribute elementClass. The value "DiagramData" denotes a diagram (and we can then
extract additional information on diagram type and owner). A value other than "DiagramData"
denotes a diagram element (which contains a cross-reference to the UML model element it
represents). To define diagram-specific metrics, we must be able distinguish diagrams from diagram
elements:

© 2002-2021. All rights reserved. 76

SDMetrics ® User Manual 7.2 XMI Transformation Files

<xmitransformation modelelement="diagram" xmipattern="mdElement"
 condition="elementClass='DiagramData'" recurse="true">
 <trigger name="style" type="ctext" src="type" />
 <trigger name="context" type="cattrval" src="parentID" attr="xmi.idref" />
</xmitransformation>

<xmitransformation modelelement="diagramelement" xmipattern="mdElement"
 condition="elementClass!='DiagramData'">
 <trigger name="element" type="cattrval" src="elementID" attr="xmi.idref" />
</xmitransformation>

The first xmitransformation for model element "diagram" specifies a condition that the
"mdElement" XML element must have an attribute elementClass of value "DiagramData". The
second xmitransformation for model element "diagramelement" picks up all mdElement
instances with an elementClass different from "DiagramData". As a result, "mdElement"
DiagramData elements are stored as "diagram" metamodel elements, all others are stored as
instances of "diagramelement".

SDMetrics uses the following strategy when searching a suitable XMI transformation for an XML
element in the XMI source file:

• First, the conditional XMI transformations are tested against the current XML element. If a
matching XMI transformation is found, it is used to process the XML element. The order in
which the conditional XMI transformations are tested is undefined. Therefore, you should
choose the conditions so that at most one condition can evaluate to true for any given XML
element.

• If no conditional XMI transformation matches the current XML element, an unconditional
XMI transformation is used, if one exists. Thus, the unconditional XMI transformation can
serve as default, "catch-all" transformation. If no unconditional XMI transformation exists,
the XML element is ignored.

The condition you specify is a Boolean expression using operands

• & (and),
• | (or),
• ! (not),
• = (equals),
• != (not equals),

as described in Section 8.5.4 "Condition Expressions". Identifiers (such as elementClass, see
Section 8.5.1.2 "Identifiers") refer to XML attributes. Values of XML attributes can be compared to
string constants, which are enclosed in single quotes (see Section 8.5.1.1 "Constants").

© 2002-2021. All rights reserved. 77

SDMetrics ® User Manual 8 Defining Custom Design Metrics and Rules

8 Defining Custom Design Metrics and Rules
With SDMetrics, you are not restricted to a fixed set of metrics. Using the SDMetricsML, the
SDMetrics Markup Language, you can define and calculate your own metrics and design rules.

The SDMetricsML is based on the XML. The metric definition file is an XML file of the following
format (for a formal definition of the file format, see Appendix E: "Project File Format
Definitions"):

<sdmetrics version="2.3" ruleexemption="taggedvalue"
 exemptiontag="tagname" >
 <metric name="met1" ...>
 <'metric definition' ...>
 </metric>
 <set ... name="set1" ...>
 <'set definition' ...>
 </set>
 <metric name="met2" ...>
 <'metric definition' ... >
 </metric>
 <matrix name="matrix1" ...>
 <'matrix definition' ... >
 </matrix>
 <rule name="rule1" ...>
 <'rule definition' ... >
 </rule>
 <wordlist name="list1" ...>
 <'wordlist definition' ... >
 </wordlist>
 <reference tag="ref1">
 bibliographic citation #1
 </reference>
 <term name="term1">
 definition of term
 </term>

 ...
</sdmetrics>

The "version" attribute (required) of the root element sdmetrics indicates the version number of
the oldest version of SDMetrics with which the metric definition file can be used. The remaining
two attributes instruct the design rule checker how to access tagged values, this will be discussed
later (Section 8.3.6 "Exempting Approved Rule Violations").

The file contains a list of definitions of metrics, as well as sets (sets of UML elements, sets of
values), design rules and word lists (see Section 4.7 "The View 'Rule Checker'"), relation matrices
(see Section 4.10 "The View 'Relation Matrices'"), literature reference and glossary terms. The
following sections describe the definition of metrics, sets, rules, and relation matrices in detail.

© 2002-2021. All rights reserved. 78

SDMetrics ® User Manual 8.1 Definition of Metrics

8.1 Definition of Metrics

A metric is defined with an XML element as follows:

<metric name="metricname" domain="metricdomain" category="metriccategory"
 internal="true/false" inheritable="true/false">
 <description>Description of the metric.</description>
 <'metric definition' ...>
</metric>

The attributes in the opening "metric" tag are as follows:

• name (required): the name of the metric. The metric names serve as column names in the
output tables, and are also used to reference the metrics.

• domain (required): the type of element for which the metric is defined (e.g., package, class,
operation).

• category (optional): describes the structural property the metric measures, e.g., "size",
"export coupling", "cohesion", etc. There is no preconceived classification of categories in
SDMetrics, you can define any categories you deem fit. This attribute only serves
documentation purposes and does not impact the calculation of the metric in any way.

• internal (optional): indicates if the metric is internal. An internal metric is not shown in
the output tables. It is rather a "helper" metric that is used to define some other metrics, but
by itself is probably not useful. Set the attribute value to "true" to mark a metric as internal.
When omitted, the attribute defaults to "false".

• inheritable (optional): indicates if the metric should also be defined for all subtypes of
the "domain" element type. When you set the attribute value to "true", all direct and indirect
subtypes of the domain "inherit" the metric definition, and the metric will be calculated for
all subtypes, too. When omitted or set to "false", the metric definition is not passed on to
subtypes.

Note that metrics for one domain must have unique names (i.e., you cannot define two metrics
named "NumOps" for classes). You can have metrics of the same name for different domains (e.g.,
a metric "NumOps" for classes, and a metric "NumOps" for interfaces).

Following the metric tag is an optional description of the metric, which will be shown in the
measurement catalog (see Section 4.13 "The View 'Catalog'"). Section 8.6 "Writing Descriptions"
explains how to write metric descriptions.

Following the description is an XML element that defines the calculation procedure for the metric.
We describe each calculation procedure in detail in the following subsections.

8.1.1 Projection

The projection is your primary workhorse. Most of the metrics you will want to define can be
expressed as projections. With twelve optional attributes that can be combined in multiple ways, the
projection offers you a lot of flexibility to define metrics. We'll start the description of attributes
with simple ones, and then advance towards more intricate attributes.

© 2002-2021. All rights reserved. 79

SDMetrics ® User Manual 8.1 Definition of Metrics

8.1.1.1 Attribute "relation"

In its simplest form, the projection gives you, for a certain element, a count of all elements having a
certain relationship with that element. The attribute "relation" specifies the relationship. Here's an
example of a simple projection:

<metric name="NumElements" domain="class">
 <description>The number of elements in the class.</description>
 <projection relation="context" />
</metric>

The metric NumElements is defined for elements of type "class". It counts, for a given class, all
elements which have a reference attribute "context" that points to that class. Attribute "context"
specifies the owner of a model element. So this metric counts all model elements of which the class
is the owner, that is, the number of elements in the class. Those elements can be of any type, e.g.,
operations, attributes, or other classes (inner classes).

8.1.1.2 Attribute "relset"

Instead of relations, you can also feed element sets into the projection. For example, packages have
a multi-valued attribute "ownedmembers" in the UML2 metamodel. We can count the number of
elements in that set as follows:

<metric name="NumMembers" domain="package">
 <description>The number of owned members of the package.</description>
 <projection relset="ownedmembers" />
</metric>

Sources for sets can be

• multi-valued attributes of model elements,
• user-defined sets. These will be discussed in Section 8.2 "Definition of Sets".

Attribute "relset" defines a set expression (see Section 8.5.3 "Set Expressions") which is evaluated
for the current element. The metric then counts the number of elements in that set.

For a projection, exactly one of the attributes "relation" or "relset" must be specified.

8.1.1.3 Filter Attribute "target"

To count only elements of a certain type in a relation or set, you can specify the optional "target"
attribute:

<metric name="NumOps" domain="class">
 <description>The number of operations in the class.</description>
 <projection relation="context" target="operation" />
</metric>

This only counts elements of type "operation" whose "context" is the given class, i.e., the number of
operations of the class.

© 2002-2021. All rights reserved. 80

SDMetrics ® User Manual 8.1 Definition of Metrics

Filtering for several types

If you want to count elements of several types, specify the additional types separated by a "|". For
example, to count the classes, interfaces, and data types in a package, we write:

<metric name="NumEl" domain="package">
 <projection relation="context" target="class|interface|datatype" />
</metric>

Filtering for subtypes

In SDMetrics' metamodel for UML2, type "class" is the parent type of several subtypes such as
"usecase", "actor", "component". The target filter target="class", however, only accepts
elements of type "class". Elements whose type is a subtype of type "class" will not be accepted.
Thus, the following metric "NumCls" only counts the classes in the package, not including actors,
use cases, and so forth:

<metric name="NumCls" domain="package">
 <projection relation="context" target="class" />
</metric>

To also accept elements of direct or indirect subtypes of the type, put a "+" prefix in front of the
type name:

<metric name="NumClsTypeEl" domain="package">
 <projection relation="context" target="+class" />
</metric>

This will count all classes, actors, usecases, components, and other elements in the package whose
type is a direct or indirect subtype of "class".

You can combine subtype filtering with filtering for several types. For example,
target="+class|interface|+datatype" will accept classes and datatypes as well as
their subtypes, and interfaces, but not any subtypes of "interface".

8.1.1.4 Filter Attributes "element" and "eltype"

In the UML, relationships such as generalizations or dependencies are represented by model
elements of their own, which contain references to the elements that participate in the relationship.
Figure 34 illustrates this situation:

© 2002-2021. All rights reserved. 81

SDMetrics ® User Manual 8.1 Definition of Metrics

Figure 34: Example dependency links

Class c is the client in three dependency relationships with three suppliers: a package and two other
classes. A UML 1.x dependency element links the client and supplier via its cross-reference
attributes "depclient" and "depsupplier" (cf. metamodel element dependency in Appendix A.1
"Metamodel for UML 1.3/1.4"). We can specify a projection for the "depclient" relation for
dependency elements:

<metric name="Dependencies" domain="class">
 <description>The number of dependencies in which the class
 participates as client.</description>
 <projection relation="depclient" target="dependency" />
</metric>

This projection retrieves the elements of type "dependency" where the given class is the client. For
class c, this would get us d0, d1, and d2. So far so good, however, we are probably more interested
in actual supplier elements. This is where attribute "element" comes in:

<metric name="SupplierElements" domain="class">
 <description>The supplier elements of which the class
 is a client.</description>
 <projection relation="depclient" target="dependency"
 element="depsupplier" />
</metric>

By specifying the attribute "element", the projection does not access the dependency element, but
the element referenced via the "depsupplier" relation specified by the "element" attribute. In
Figure 34 above, this gives us p, s1, and s2. In other words, the suppliers we want. To filter for
suppliers of a certain type, we specify the additional attribute "eltype" that indicates the type of
elements we are interested in:

<metric name="SupplierClasses" domain="class">
 <description>The supplier classes of which the class
 is a client in a dependency.</description>
 <projection relation="depclient" target="dependency"
 element="depsupplier" eltype="class" />
</metric>

This projection now only returns supplier classes (s1 and s2 for class c in the above example).

Note that the value of the "element" attribute is a metric expression. In addition to cross-reference
attributes, you can specify arbitrary metric expressions that return model elements (see
Section 8.5.2.2 "Special Operators").

© 2002-2021. All rights reserved. 82

class c

dependency d0 package p

class s1

class s2

dependency d1

dependency d2

depclient

depclient

depclient

depsupplier

depsupplier

depsupplier

SDMetrics ® User Manual 8.1 Definition of Metrics

As with the "target" attribute, you can filter for several element types and/or subtypes with the
"eltype" attribute. Just separate the additional element types with a "|", and precede types whose
subtypes should also be admitted with a "+", for example:
 eltype="+class|interface|+datatype".

8.1.1.5 Filter Attributes "condition" and "targetcondition"

Besides filtering elements of a certain type, you can filter for elements that satisfy a certain
condition. Assume we have defined a multi-valued attribute 'ownedoperations' for classes, which
contains the operations of the class.

<metric name="NumPublicOps" domain="class">
 <description>The number of public operations in the class.</description>
 <projection relset="ownedoperations" condition="visibility='public'" />
</metric>

The condition expression "visibility='public'" is evaluated for each element in the set, only
operations that fulfill this condition are counted. The admissible operations for condition
expressions are described in Section 8.5.4 "Condition Expressions".

If you combine the "condition" attribute with the "element" and "eltype" attributes, the expression
will be evaluated for the model elements returned by those attributes, e.g.,

<metric name="AbstractDep" domain="package">
 <description>
 The number of abstract classes the class depends on.
 </description>
 <projection relation="depclient" target="dependency" element="depsupplier"
 eltype="class" condition="abstract='true'"/>
</metric>

With attribute "targetcondition" you can specify a condition that is always evaluated for the element
returned by the "target" attribute, even if the "element" and "eltype" attributes are used. The
following example assumes that "stereotypename" is an attribute or metric that yields the name of
the stereotype of a model element:

<metric name="Realize" domain="package">
 <description>The number of classes the class realizes.</description>
 <projection relation="depclient" target="dependency"
 targetcondition="stereotypename='realize'" element="depsupplier"
 eltype="class" />
</metric>

This metric only counts dependencies with stereotype <<realize>> that have a class as supplier.

8.1.1.6 Filter Attribute "scope"

For a detailed analysis of the modularity of a system it is interesting to take the scope of elements
into account. For instance, any sufficiently large design will usually be organized in a hierarchy of
packages. Dependency relationships or associations between classes in the same package would
appear less critical than links between classes from different packages.

© 2002-2021. All rights reserved. 83

SDMetrics ® User Manual 8.1 Definition of Metrics

With the "scope" attribute, you can filter for elements that fulfill a condition for the scope:

<metric name="SameScope_SupplierClasses" domain="class">
 <description>The number of supplier classes of a client
 class defined in the same scope.</description>
 <projection relation="depclient" target="dependency"
 element="depsupplier" eltype="class" scope="same"/>
</metric>

For a given client class, this projection only accesses supplier classes that are in the same scope as
the current class. You can specify one of the following values for the "scope" attribute:

• same: the projected element is in the exact same scope. In Figure 35 below, Class1 and
Class2 are in the same scope. So are Class3 and Class4.

• other: the projected element is not in the same scope. In Figure 35 below, this applies to all
class pairs except Class1&Class2 and Class3&Class4.

• higher: the projected element is higher in the scope hierarchy. E.g., for Class3, only Class1
and Class2 are higher in the scope hierarchy. The same holds for Class4 and Class6. For
Class 5, all classes except Class6 are higher in the hierarchy. Class6 is on a different branch,
hence not higher or lower than Class5.

• lower: the projected element is lower in the scope hierarchy. For Class3, only Class5 is
lower in the hierarchy. For Class1, all classes except Class2 are lower.

• nothigher: the inverse of "higher". For Class3, the following classes are not higher in the
scope hierarchy: Class4 (because it's in the same scope), Class5 (because it's lower) and
Class6 (because it's on a different branch).

• notlower: the inverse of "lower". For Class3, all classes but Class5 are not lower in the scope
hierarchy.

• sameorhigher: the projected element is in the same scope or higher scope. E.g., for class4,
that would be Class1, Class2, and Class3.

• sameorlower: the projected element is in the same scope or lower scope. Again, for Class4,
that would be Class3 and Class5.

• samebranch: same or higher or lower scope. For Class1 and Class2, this includes all classes.
For Class3, Class4, and Class5, this includes all classes but Class6.

• notsamebranch: the inverse of "samebranch". For Class6, this would be classes Class3,
Class4, and Class5. All other class pairs are on the same branch.

Figure 35: Example package hierarchy

In the above cases, we compared the scope of two elements. There are four more values we can
specify for scope: idem/notidem, and containedin/notcontainedin. These test if the element for
which the metric is calculated is/is not the scope of the projected element.

© 2002-2021. All rights reserved. 84

Class2

Class1

Class4

Class3

Class5
Class6

package1.1.1

package1.1

package1

package1.2

SDMetrics ® User Manual 8.1 Definition of Metrics

For example, we want to define a package coupling metric that counts the number of stimuli sent to
instances of classes in the package, from instances of classes outside the package (i.e., stimuli that
cross the package boundary).

We assume we have already defined for packages the set "StimRecvSet" of stimuli received by
object instances of classes in the package. We need to check, for each stimulus in that set, if type of
the sender is a class that is not defined in the current package:

<metric name="StimRecv_ex" domain="package">
 <description>The number of stimuli received by object instances
 of classes outside the package.</description>
 <projection relset="StimRecvSet" target="stimulus"
 element="stimsender.objtype.context" scope="notidem" />
</metric>

The element attribute accesses the package of the class of the instance that sent the stimuli. The
scope attribute value "notidem" only accepts elements that are not identical to the current element
for which the metric is calculated. So we only count stimuli where the context of the class of the
sender is not the current package - i.e. stimuli sent from outside the package.

To further illustrate the new scope comparisons, consider again the example package hierarchy in
Figure 35. The additional values for attribute scope are:

• idem: only return elements identical to the element for which the metric/set is calculated.
Using "idem" as scope in metric "StimRecv_ex" above would count the stimuli sent between
instances of classes of the package. For package1.1 in Figure 35, this would be stimuli sent
within or between instances of Class3 and Class4.

• notidem: only return elements not identical to the element for which the metric/set is
calculated. For package1.1, these are stimuli sent from Class1, Class2, Class5, and Class6.

• containedin: only returns elements that are identical to or contained in the element for which
the metric/set is calculated. Using "containedin" as scope in metric "StimRecv_ex" above
would count stimuli sent to instances of classes of the package from instances of classes of
the package, or any of its subpackages. For package1.1, these are Class3, Class4, and Class5.

• notcontainedin: only return elements that are not contained in the element for which the
metric/set is calculated. Using "notcontainedin" as scope in metric "StimRecv_ex" above
would count stimuli sent to instances of classes of the package from instances of classes
outside the package and any of its subpackages. For package1.1, these are stimuli sent from
Class1, Class2, and Class6.

Note that in the definition of metric "StimRecv_ex" above, we could not use the scope value "other"
or any of the values explained previously. To see why, take again the example of package1.1: the
scope of package1.1 is package1, and it is this package1 against which all comparisons are made!
For example, the elements that are in the same scope as package1.1 are Class1 and Class2.

8.1.1.7 Attributes "sum" and "stat"

You are not restricted to just counting elements in a relation. You can evaluate a metric expression
(see Section 8.5.2 "Metric Expressions") for the elements in a relation, and add up the values, or
return the maximum or minimum value. For example:

© 2002-2021. All rights reserved. 85

SDMetrics ® User Manual 8.1 Definition of Metrics

<metric name="NumOps" domain="package">
 <projection relation="context" target="class" sum="NumOps" />
</metric>

The expression "NumOps" is evaluated for each class in the package. This metric returns the
number of operations in the classes in a package.

To return the maximum or minimum of the values evaluated for the sum expression, specify the
additional attribute "stat". The stat attribute can take values "max", "min" or "sum" (default value).
For example:

<metric name="MaxNumOps" domain="package">
 <description>The maximum number of operations in a class
 of the package.</description>
 <projection relation="context" target="class"
 sum="NumOps" stat="max" />
</metric>

When you combine "sum" with the "element" and "eltype" attributes, the sum will be taken over the
elements returned by those attributes. For example:

<metric name="SupplierOperations" domain="class">
 <description>The number of public operations in the supplier
 classes of a client class.</description>
 <projection relation="depclient" target="dependency"
 element="depsupplier" eltype="class" sum="NumPubOps"/>
</metric>

8.1.1.8 Attribute "recurse"

With the "recurse" attribute, you can define metrics that take the transitive closure of relations or
sets into account. The recurse attribute takes the values "true" or "false" (default).

Setting the value of "recurse" to true changes the meaning of a metric m for elements of type t as
follows: in addition to processing the projection attributes as usual, apply metric m to all
"compatible" elements in the projection, and add the result to the return value of the metric. An
element is "compatible" if its type is t, or if its type is a subtype or supertype of t and metric m is
defined for the type.

<metric name="NumCls_tc" domain="package">
 <description>The number of classes in a package,
 its subpackages, and so on.</description>
 <projection relation="context" target="class" recurse="true"/>
</metric>

Without the "recurse" attribute being set to true, the above metric would just count the number of
classes in a package. With recurse set to true, metric NumCls_tc is in addition recursively applied to
all subpackages that are in the context of a package, and the values added up. As result, you not
only obtain the number of classes in the package, but also in its subpackages, sub-subpackages, and
so on. In Figure 35, the metric NumCls_tc yields the following values:

Package NumCls_tc
package1 6

© 2002-2021. All rights reserved. 86

SDMetrics ® User Manual 8.1 Definition of Metrics

package1.1 3
package1.1.1 1
package1.2 1
Table 4: Example package metrics

As another example, the number of descendents of a class can be defined as follows:

<metric name="NumDesc" domain="class">
 <description>The number of descendents of a class.</description>
 <projection relation="genparent" target="generalization"
 element="genchild" eltype="class" recurse="true"/>
</metric>

Without the "recurse" attribute, this metric would count the number of children of a class. With
"recurse" being set to true, the metric NumDesc is recursively evaluated for each child class, and
added to the total.

Care must be taken when the "recurse" attribute is combined with the filter attributes (target,
targetcondition, eltype, element, condition, scope). The filter attributes are NOT evaluated for the
selection of elements on which to apply the metric recursively. The metric is always recursively
applied to all elements in the unfiltered projection that are compatible with the element for which
the metric is calculated. Consider this example:

<metric name="NumDesc_SameScope" domain="class">
 <projection relation="genparent" target="generalization"
 element="genchild" eltype="class"
 scope="same" recurse="true"/>
</metric>

This will not work. While only child classes in the same scope are counted, the metric is recursively
applied to all child classes (regardless of their scope), and the number of their "same scope
descendents" is added to the total. To define the intended metric, you would first define the set (see
Section 8.5.3 "Set Expressions") of descendents of the class, and then define a projection to filter
the classes with the desired scope in that set.

8.1.1.9 Attribute "nesting"

Like the "recurse" attribute, the "nesting" attribute takes the transitive closure of relations or sets
into account. However, it has a very different meaning; with the "nesting" attribute, you determine
the length of the longest path in the transitive graph of a relation.

The "nesting" attribute takes the values "true" or "false" (default). When "nesting" is set to true for a
project metric m for type t, the metric is recursively applied to all "compatible" elements in the
projection. An element is "compatible" if its type is t, or if its type is a subtype or supertype of t and
metric m is also defined for the type. The maximum value of all values returned, increased by one,
is the value of the metric. Example:

<metric name="DIT" domain="class">
 <description>Depth of the class in the inheritance tree.</description>
 <projection relation="genchild" target="generalization"
 element="genparent" eltype="class" nesting="true"/>
</metric>

© 2002-2021. All rights reserved. 87

SDMetrics ® User Manual 8.1 Definition of Metrics

Without the nesting="true" attribute, the above metric would simply count the number of
parent classes of a class. With "nesting" set to true, the meaning of the metric changes as follows:
calculate the DIT for all parents of the class, take the maximum DIT over all parent classes, increase
it by one. As a result, this metric calculates the longest path from the class to the root in the
inheritance graph.

The "nesting" attribute cannot be combined with the "sum" attribute or the "recurse" attribute. It
can, however, be combined with all other attributes, including the filter attributes (target,
targetcondition, element, eltype, scope, condition). Recursive calls are not applied to elements that
do not fulfill the filter criteria.

8.1.1.10 Summary of Projection Attributes

The admissible attributes for a projection definition are

• relation: operate on elements of 'incoming' relations
• relset: operate on elements of 'outgoing' relations or pre-calculated sets
• target: element type(s) of related elements
• element: for indirect relationships, relation link to follow
• eltype: for indirect relationships, type(s) of related element
• condition and targetcondition: discard elements which do not fulfill the specified

expression
• scope discard elements which do not fulfill the scope condition
• sum: expression to evaluate and add up for each related element
• stat: specify "min" or "max" to obtain the minimum or maximum value of all "sum"

metric expressions evaluated.
• recurse: calculate and add up same metric for compatible elements (default false)
• nesting: calculate nesting level for specified relation (default false)

The algorithm to evaluate a projection is presented here in pseudo-code.

function projection(modelelement me) is:
 // init result value
 result := 0
 // retrieve elements specified by attribute "relation"
 if(relation specified) rel := all elements in relation with me
 else rel := result of set expression applied to me
 while(still elements in rel):
 el := next element in rel
 // filter "target" attribute and condition
 if(target specified and el is not one of the types) goto invalid
 if(targetcondition specified and el does not fulfill it) goto invalid
 // handle indirect relations (attributes "element" and "eltype")
 if(element specified)
 el := el.element
 if(eltype specified and el is not one of the types) goto invalid
 endif
 // filter "condition" attribute
 if(condition specified and el does not fulfill it) goto invalid
 // filter "scope" attribute
 if(scope specified and el does not fulfill scope) goto invalid
 if(nesting)
 if(el is compatible with me)
 result:=max(result, projection(el)+1)

© 2002-2021. All rights reserved. 88

SDMetrics ® User Manual 8.1 Definition of Metrics

 continue // next iteration of the while loop
 else
 if(sum specified)
 if(stat="max")
 result:=max(result,sum(el))
 else if(stat="min")
 result:=min(result,sum(el))
 else
 result:=result+sum(el) // default no attribute "stat"
 else
 result:=result+1
invalid:
 if(recurse)
 if(el is compatible with me)
 result:=result+projection(el)
 endwhile
 return result
endfunction

8.1.2 Compound Metrics

A compound metric is a metric that is defined in terms of other metrics. As an example for a
compound metric, assume we have two metrics defined for packages

• "NumCls", the number of classes in the package,
• "NumOps", the number operations in the classes in the package.

We can then define a metric for the average number of operations in the classes of the package as
follows:

<metric name="AvgOps" domain="package">
 <description>The average number of operations in the
 classes of the package.</description>
 <compoundmetric term="NumOps/NumCls" fallback="0"/>
</metric>

The term attribute defines the metric expression to be evaluated, which is the return value of the
metric. The optional fallback expression is used if the metric expression returns a "NaN" (not a
number) or infinity. In that case, the fallback expression is evaluated and returned as metric
result. This is useful to catch, e.g., divisions by zero and still have a well-defined metric result.

A second version of the compound metric allows the conditional evaluation of expressions:

<metric name="accessedOps" domain="class">
 <description>The number of public operations of the class,
 if it has any clients, or 0 else.</description>
 <compoundmetric condition="NumClients>0"
 term="NumPubOps" alt="0" />
</metric>

For the conditional version of the compound metric, a conditional expression (condition) and an
alternative metric expression (alt) is specified in addition to the term attribute. Their meaning is
as follows. First, the condition expression is evaluated. If it evaluates to "true", the term
expression is evaluated and returned as value of the metric (value 1 is returned if no term

© 2002-2021. All rights reserved. 89

SDMetrics ® User Manual 8.1 Definition of Metrics

expression is specified). If the condition expression is "false", the alt metric expression is
evaluated and returned as result of the metric (value 0 is returned if no alt expression is specified).

8.1.3 Attribute Value

You can define a metric which returns the value of a SDMetrics metamodel attribute of an element
or a related element. This is useful if you want attribute values to appear in the output table, and it
can help simplify the definition of other metrics. For example, to show the "visibility" attribute for
elements of type "operation" in the output tables:

<metric name="visibility" domain="class">
 <description>The visibility of the operation.</description>
 <attributevalue attr="visibility"/>
</metric>

An attributevalue element has three attributes:

• attr (required) specifies the metamodel attribute to return.
• element and eltype (both optional) if you want to access the attribute of a related

element, not the model element itself; we know these attributes from projections, see
Section 8.1.1.4 "Filter Attributes "element" and "eltype"".

The below examples demonstrates the "element" attribute. The metric shows the name of a
parameter's type.

<metric name="typename" domain="parameter">
 <description>The parameter type name.</description>
 <attributevalue element="parametertype" attr="name"/>
</metric>

8.1.4 Nesting

The nesting procedure can be used to calculate the level of recursive nesting of elements. For
instance, packages can be nested within other packages, classes can contain inner classes, states can
be contained in (composite) states, and so on. With the nesting procedure, you can count the
levels of nesting.

The nesting procedure has one required attribute, relation, specifying the relation which
establishes the nesting relationship. Usually, this will be the "context" relation. For example:

<metric name="NestingLevel" domain="package">
 <nesting relation="context" />
</metric>

The calculation procedure is as follows: retrieve the element that is referenced by the specified
relation (here: context). If this element is "compatible", recursively calculate the metric for that
element, increase by one, and return that value. Else (context element is not of the same type, e.g.,
top level packages defined in the namespace of the model), the metric yields 0.

© 2002-2021. All rights reserved. 90

SDMetrics ® User Manual 8.1 Definition of Metrics

An element is "compatible" with nesting metric m of domain type t if the type of the element is t, or
if its type is a subtype or supertype of t and metric m is defined for the type.

For a typical package hierarchy, the results are (column NestingLevel):

Package NestingLevel LNest
javax 0 2
javax.swing 1 1
javax.swing.event 2 0

Table 5: Package nesting metrics example

How does the nesting procedure is differ from projections using the nesting attribute?
Projections navigate the specified relation in the opposite direction. A projection operates on all
elements where the specified relation points to the current element for which the projection is
calculated (navigation to the current element). The nesting procedure, on the other hand, simply
navigates from the current element to the element referenced by the specified relation (navigation
away from the current element). Consequently, a metric LNest defined as a projection as follows
would count the levels of nesting within a package (as shown in column "LNest" of Table 5):

© 2002-2021. All rights reserved. 91

SDMetrics ® User Manual 8.1 Definition of Metrics

<metric name="LNest" domain="package">
 <description>Levels of package nesting in this package.</description>
 <projection relation="context" target="package" nesting="true" />
</metric>

8.1.5 Signature

The signature procedure creates signature strings such as the name and parameter list of an
operation.

<metric name="Signature" domain="operation" >
 <description>The signature of an operation.</description>
 <signature set="OPParameters" element="parametertype" />
</metric>

The elements that constitute the parameter list are specified by attribute set. Each element in the
set can be subjected to the usual filters (target, element, eltype, condition, targetcondition, scope). In
the above example, set OPParameters is defined to be the set of parameters of the operation, and we
include the type of each parameter in the signature instead of the parameter itself.

The result is a string that contains the name of the operation, and the IDs of the types of the
parameters in the order the parameters are defined in the XMI source file, for example
'getBalance(xmi4893,xmi238011)'. With these strings you can build, for instance, signature sets of
the operations of a class and define metrics dealing with method overriding.

To obtain more human readable signature strings, you can further define the presentation of the
elements on the signature list. The following definition generates signature strings such as
'getBalance[account:int; time:TimeStamp]':

<metric name="Signature2" domain="operation" >
 <description>Operation signature with brackets and parameter
 names/types in the clear.</description>
 <signature prologue="name+'['" set="OPParameters"
 value="name+':'+parametertype.name" separator="'; '" epilogue="']'" />
</metric>

The attributes to control the presentation are:

• prologue: defines the prologue of the signature string, and usually includes the name of
the element and some version of an opening parenthesis. The expression is evaluated for the
owner of the signature list. The default value is name+'('.

• value: defines the presentation of the elements on the signature list. The expression is
evaluated for each list element. By default, this is the XMI ID of the element.

• separator: defines how the elements on the signature list are separated. The default value
is a single comma.

• epilogue: defines the closing of the signature string, usually some version of a closing
parenthesis. The expression is again evaluated for the owner of the signature list. The default
value is ')'.

© 2002-2021. All rights reserved. 92

SDMetrics ® User Manual 8.1 Definition of Metrics

8.1.6 Connected Components

The connectedcomponents procedure is used to count the connected components in a graph.
The procedure uses element sets to obtain information about nodes and edges of the graph. The
procedure has four attributes:

• set (required): the element set that constitutes the nodes of the graph.
• nodes (required): a set expression that returns, for a node, the set of connected nodes to

which there is an (outgoing) edge.
• undirected (optional): takes values "true" or "false". The default value is "false" and the

procedure calculates the strongly connected components of the directed graph. When set to
"true", the connected components of the underlying undirected graph will be computed (i.e.,
the direction of edges is ignored, an edge can always be followed in both ways).

• minnodes (optional): only counts connected components exceeding a certain size. For
example, if you specify minnodes="3", only connected components that have at least three
nodes will be reported.

For example, to calculate the number of inheritance hierarchies among the classes in a package, we
define three element sets (see Section 8.2 "Definition of Sets"):

• set Classes: the set of classes in a package
• set Parents: the set of parent classes of a class
• set Children: the set of children classes of a class

We can then calculate the number of connected components in the inheritance hierarchy as follows:

<metric name="InhHierarchies" domain="package">
 <description>The number of inheritance hierarchies.</description>
 <connectedcomponents set="Classes" nodes="Parents+Children" />
</metric>

The following example uses an undirected graph and only counts connected components with at
least two nodes (i.e., ignoring isolated classes that do not participate in any inheritance
relationship):

<metric name="InhHierarchies" domain="package">
 <description>The number of non-trivial inheritance hierarchies.</description>
 <connectedcomponents set="Classes" nodes="Parents" undirected="true"
 minnodes="2" />
</metric>

8.1.7 Value Filter

The "filtervalue" procedure evaluates a metric expression for the first element in a relation or set,
and returns the result of this metric expression.

The following example uses the "filtervalue" procedure to access the data value of a particular
tagged value pair. We assume elements of type "taggedvalue" have two metrics "TagName" and
"TagData", which yield the name and data value of the tagged value, respectively.

© 2002-2021. All rights reserved. 93

SDMetrics ® User Manual 8.1 Definition of Metrics

<metric name="Author" domain="class">
 <description>Author of the class.</description>
 <filtervalue relation="context" target="taggedvalue"
 condition="tagName='Author'" value="tagData"/>
</metric>

The above metric takes the first tagged value with tag name 'Author' that it finds, evaluates the
expression specified by the "value" attribute for that tagged value, and returns the result of that
expression as the result of the metric.

The "filtervalue" procedure has the following attributes:

• relation (optional): name of the relation that contains the elements to check.
• relset (optional): an element set that contains the elements to check. Exactly one of the

attributes relation or relset must be specified.
• the usual optional filter attributes: target, targetcondition, element, eltype, scope, condition

(see Section 8.1.1 "Projection").
• value (optional): the metric expression to evaluate for the first matching element. When

omitted, the element itself is returned.

8.1.8 Subelements

The subelements procedure allows for a simple way to count all elements, or all elements
selected types, that a given model element owns directly or indirectly.

For example, to count for a package the number of operations that are defined in interfaces, classes
(including inner classes), subsystems etc. of the package and all of its subpackages and subsystems,
sub-subpackages and so on, at any level, we can simply write:

<metric name="NumOps_tc" domain="package">
 <description>The number of operations defined in the package, its subpackages,
 etc.</description>
 <subelements target="operation"/>
</set>

One could achieve the same result with projections, however, it would require the definition of
several helper metrics to gather operations in interfaces, classes, etc. separately and take the sum of
these metrics.

The subelements procedure takes the following, optional, attributes:

• the filter attributes target, targetcondition, element, eltype, condition, and scope (see
Section 8.1.1 "Projection").

• the summation attributes sum and stat (see Section 8.1.1.7 "Attributes "sum" and "stat"").

8.1.9 Substring

UML tools sometimes mangle various bits of tool-specific information into a single string in the
XMI file. For example, the coordinates of an element in a diagram could be specified as follows:

© 2002-2021. All rights reserved. 94

SDMetrics ® User Manual 8.1 Definition of Metrics

• ...<geometry>206, 320, 69, 13</geometry>..., or
• ... location="Left=620;Top=743;Right=732;Bottom=783" ...

With the substring procedure we can extract parts of such strings. Substring extraction is based
on separator strings. In its simplest form, we have something like a comma-separated list of values
such as "206, 320, 69, 13". The following definition extracts the third value, "69", from the list:

<metric name="width_string" domain="diagramelement">
 <substring source="geometry" separator="','" position="2"/>
</metric>

Attribute source specifies a metric expression that yields the string we want to dissect. Attribute
separator specifies the separator string, which can be of any length. This will usually be just a
string constant, so it needs to be enclosed in single quotes (see Section 8.5.1.1 "Constants"). In our
example, the separator is a single comma, which will split the string "206, 320, 69, 13" into four
parts: "206", "320", "69", and "13". Leading or trailing whitespaces are automatically trimmed from
each substring.

With the position parameter, we tell SDMetrics which substring we want; the first substring is at
position 0, position 2 yields the third value, "69". With negative positions -1, -2, etc. we can access
the last substring, last but one substring, and so on, without having to know how many substrings
there are. The default value for attribute position is -1 (return the last substring).

Often we do not want to use the substring as is, but process it further, e.g., retrieve its numerical
value. We can do this directly with the optional attribute result. The following metric extracts
the first value of a comma-separated list and converts it to a number:

<metric name="left" domain="diagramelement">
 <substring source="geometry" separator="','" position="0"
 result="parsenumber(_value)"/>
</metric>

Attribute result specifies a metric expression, variable _value contains the value of the
substring we extracted.

In a source string such as "Left=620 ; Top=743 ; Right=732 ;", the beginning and end of the
interesting substrings are delimited by different separators. The optional argument
endseparator deals with this situation:

<metric name="top" domain="diagramelement">
 <substring source="location" separator="'Top='" endseparator="';'"
 result="parsenumber(_value)"/>
</metric>

The separator 'Top=' cuts up the source string into two substrings: "Left=620 ;" and "743 ;
Right=732 ;". Of these, we use the second (last) substring, because the position argument is
missing. The attribute endseparator="';'" instructs SDMetrics to cut off the substring at the
first semicolon. After automatic trimming of whitespace, this leaves us with the string "743", which
then gets converted to the number 743.

The "substring" procedure has the following attributes:

© 2002-2021. All rights reserved. 95

../../dist/web/manual/Constants.html

SDMetrics ® User Manual 8.1 Definition of Metrics

• source (required): Metric expression that yields the source string.
• separator (required): Metric expression that yields the separator string.
• position (optional): Metric expression that yields the index of the substring to use. Uses

the last substring when omitted.
• endseparator (optional): Metric expression that yields a separator string to further

delimit the substring to the right. Uses the entire substring when omitted.
• limit (optional): The maximum number of substrings returned. The last substring contains

the remainder of the source string, even if there are further occurences of the separator
string. When omitted, the number of substrings is determined by the number of occurences
of the separator string.

• result (optional): A metric expression to be applied to the resulting substring. The
variable "_value" contains the value of the substring. When omitted, the substring itself is
returned.

© 2002-2021. All rights reserved. 96

SDMetrics ® User Manual 8.2 Definition of Sets

8.2 Definition of Sets

For a UML model element, you can define any number of sets. Sets are useful to simplify the
definition of metrics and rules (as we already have seen in the previous section), and to define
metrics with set semantics. For instance, there can be multiple associations between two classes. If
you want a metric not to account for each association separately, but just the fact that there is at
least one association, you can accomplish this with sets.

We distinguish two types of sets:

• element sets, which are sets of UML model elements, for example, the set of descendent
classes of a class,

• value sets, which are sets of metric values.

We also distinguish between multisets and regular sets. In a multiset, an element can occur multiple
times, whereas in a regular set, an element can occur only once. Multisets are also known as "bags".

The distinctions element/value set and multi/regular set are orthogonal. You can have regular
element or value sets as well as multisets of elements and multisets of values.

A set is defined with an XML element as follows:

<set name="setname" domain="setdomain" multiset="false|true"
 inheritable="true/false">
 <description>Description of the set</description>
 <'set definition' ...>
</set>

The attributes in the opening "set" tag are:

• name (required): the name of the set, used to reference the set by other metrics in the
metrics definition file.

• domain (required): the type of element for which the set is defined (e.g., package, class,
operation).

• multiset (optional): indicates if this set is a multiset (multiset="true") or a regular
set (multiset="false"). When omitted, this attribute defaults to "false".

• inheritable (optional): indicates if the set should also be defined for all subtypes of the
"domain" element type. When you set the attribute value to "true", all direct and indirect
subtypes of the domain "inherit" the set definition, and the set can be calculated for all
subtypes, too. When omitted or set to "false", the set definition is not passed on to subtypes.

Like metrics, the sets for one domain must have unique names. Also, within one domain you cannot
have a set and a metric of the same name. For example, if you defined a set "Ancestors" for classes,
you cannot also define a metric "Ancestors" for classes.

Following the "set" tag is an optional description of the set, enclosed in <description> tags.
Set descriptions are currently not shown to the end user, and mostly serve as comments for the
maintainer of the metric definition file. See Section 8.6 "Writing Descriptions" how to write (set)
descriptions.

© 2002-2021. All rights reserved. 97

SDMetrics ® User Manual 8.2 Definition of Sets

Following the description is an XML element that defines the calculation procedure for the set. We
describe these calculation procedures in detail in the following subsections.

8.2.1 Projection

We have already seen how projections work for the definition of metrics (Section 8.1.1
"Projection"). The definition of sets via projections works almost the same way. For example, an
element set containing the child classes of a class can be defined as follows:

<set name="Children" domain="class">
 <description>The set of children of the class.</description>
 <projection relation="genparent" target="generalization"
 element="genchild" eltype="class"/>
</set>

The following example defines a multiset containing the supplier classes to which a class has a
dependency link. If a class has multiple dependency links to the same supplier class, that supplier
class will occur multiple times in the resulting set.

<set name="SuppClasses" domain="class" multiset="true">
 <description>The supplier classes of which the class
 is a client in a dependency.</description>
 <projection relation="depclient" target="dependency"
 element="depsupplier" eltype="class" />
</set>

The following attributes we know from projections for metrics (see Section 8.1.1 "Projection") are
also available for set projections:

• relation: name of the relation that contains the elements to include in the set
• relset: a set expression defining the elements of the set. Exactly one of the attributes

relation or relset must be specified.
• target: element type(s) of related elements
• element: for relations with an indirection, relation links to follow
• eltype: for relations with an indirection, type(s) of indirectly related element
• targetcondition and condition: reduce set to elements which fulfill the specified

expression
• scope: reduce set to elements which fulfill a scope condition in relation to the element for

which the set is defined

In the remainder of this section, we describe set projection attributes that are new or have changed
meanings from the metric projection attributes.

8.2.1.1 Attribute "recurse"

The recurse attribute known from metrics projections is also available for sets. By setting
recurse="true", SDMetrics recursively calculates and takes the union of sets for compatible
elements in the relation. The element is compatible if it is of the same type as the domain of the
metric, or a subtype or supertype and the set is also defined for the type.

© 2002-2021. All rights reserved. 98

SDMetrics ® User Manual 8.2 Definition of Sets

For example, we can easily change the definition of the set of children classes from above to yield
the element set of descendents classes:

<set name="Descendents" domain="class">
 <description>The set of descendents of a class.</description>
 <projection relation="genparent" target="generalization"
 element="genchild" eltype="class" recurse="true"/>
</set>

For each child class, the set "Descendents" is evaluated, and the union of all these sets is taken. The
child classes themselves also are included in the set. This effectively produces the set of
descendents for a class.

8.2.1.2 Attribute "set"

The set attribute is the set counterpart of the sum attribute for metrics. If you specify a set
expression using the set attribute, the set expression is evaluated for each element in the
projection, and the union over all these sets is taken.

In the following example, we assume we have defined two sets for classes:

• "AssCls" - the set of classes that have an association with the given class
• "DepCls" - the set of class that have a dependency (client or supplier) with the given class

We can then define, for a package, the set of classes that have an association or dependency link
with a class in the package:

<set name="AssCls" domain="package">
 <projection relation="context" target="class"
 set="AssCls+DepCls" />
</set>

The sets referenced in the set expression may be either all element sets, or all value sets (see also
Section 8.2.1.4 "Attribute "valueset""). The resulting set will be of the same type as the constituent
sets.

8.2.1.3 Attribute "exclude_self"

The attribute exclude_self can take the values "true" or "false" (default).

When exclude_self is set to true, the element for which the set is calculated is not included in
the result set. For example, assume we want to determine, for a state in a state diagram, the set of
states that can be reached from that state:

© 2002-2021. All rights reserved. 99

SDMetrics ® User Manual 8.2 Definition of Sets

<set name="Reachable_States" domain="state">
 <description>The set of reachable states.</description>
 <projection relation="transsource" target="transition"
 element="transtarget" eltype="state"
 recurse="true" exclude_self="true" />
</set>

By setting exclude_self to true, the state for which the set is calculated is not included in the
result set, even if the state-transition graph has loops back to the state.

8.2.1.4 Attribute "valueset"

So far, the examples shown were element sets, containing UML model elements. With the
valueset attribute, you can define value sets containing the values of metric expressions.

For example, if a metric "Signature" for operations contains the signature string of the operation,
you can define the set of signatures for the operations of a class as follows:

<set name="Sigs" domain="class">
 <description>The set of signatures of the operations in the
 class.</description>
 <projection relation="context" target="operation"
 valueset="Signature" />
</set>

The metric expression "Signature" is evaluated for each operation; the resulting values are stored in
the set.

Attribute valueset may be used in combination with all other attributes except set or
exclude_self.

8.2.2 Subelements

Similar to the subelements procedure for metrics (see Section 8.1.8 "Subelements"), the
subelements procedure for sets allows for a simple way to define a set of all elements that a
given model element contains.

For example, to define the set of all actors in a model, we simply write:

<set name="ActorSet" domain="model">
 <description>The set of actors defined in the model.</description>
 <subelements target="actor"/>
</set>

The subelements procedure for sets takes the following, optional, attributes:

• the filter attributes target, targetcondition, element, eltype, condition, and scope (see
Section 8.2.1 "Projection"),

• summation attributes set (see Section 8.2.1.2 "Attribute "set""), exclude_self (see
Section 8.2.1.3 "Attribute "exclude_self""), and valueset (see Section 8.2.1.4 "Attribute
"valueset"").

© 2002-2021. All rights reserved. 100

SDMetrics ® User Manual 8.3 Definition of Design Rules

8.3 Definition of Design Rules

SDMetrics' design rules and heuristics (see Section 4.7 "The View 'Rule Checker'") are defined in
the metric definition file, making it easy for you to modify existing rules and add new rules of your
own.

The SDMetricsML defines a design rule with an XML element like follows:

<rule name="rulename" domain="ruledomain"
 category="rulecategory" severity="ruleseverity"
 applies_to="ruleapplication" disabled="false|true"
 inheritable="true/false" >
 <description>Description of the rule.</description>
 <'rule definition'" />
</rule>

The attributes of the enclosing "rule" tag are:

• name (required). The name of the rule, used to identify the rule in the output.
• domain (required). The element type for which the rule is defined.
• category (optional). The name of the category to which this rule belongs, e.g.,

"Incomplete Design", "Naming", "Modularity", etc.
Note that there is no preconceived categorization of design rules to adhere to in SDMetrics -
you can define any categories you deem fit.

• severity (optional). The severity of the rule indicates how critical a violation of the rule
is, e.g., "very severe", "moderate", etc.
Again, there is no preconceived severity scale in SDMetrics, you can define any severity
levels you like. However, you should consider that users will sort the list of reported rule
violations by the severity of rules. The sorting is done lexicographically. Therefore, you
should define the severity levels in a manner that they can be meaningfully sorted. For
example, instead of "high", "medium", "low", define the levels as "1-high", "2-med", "3-
low" to preserve the scale when sorting.

• applies_to (optional). Defines when the rule is applicable. For instance, some rules may
only be useful at a particular design phase (requirements, analysis, design), or for a
particular type of system (say, real time systems). The user can then decide to only check
rules that are applicable to the model at hand, and ignore the remainder of the rules (see
Section 4.7.1 "Filtering Design Rules").
To use this feature, you first identify the application areas you wish to distinguish, and
define a label for each area. The label must be a sequence of characters, without whitespaces
and punctuation, for example "analysis", "design", or "realtime". Once more, there is no
preconceived set of application areas, you can define whatever areas you find useful.
Once you have identified your application areas and their labels, specify for each rule the
label(s) of the area(s) to which the rule applies. If several areas apply, separate the labels
with commas. For example applies_to="design" or
applies_to="analysis,realtime".
If you do not specify the applies_to attribute for a rule, SDMetrics will consider the rule
to be applicable to all application areas.

• disabled (optional). With this attribute you can disable a rule. The attribute takes values
true (rule will not be checked), or false (the default, rule will be checked).

© 2002-2021. All rights reserved. 101

SDMetrics ® User Manual 8.3 Definition of Design Rules

• inheritable (optional). Indicates if the rule should also apply to subtypes of the
"domain" element type. When you set the attribute value to "true", all direct and indirect
subtypes of the domain "inherit" the rule definition, and the rule will be checked for all
subtypes, too. When omitted or set to "false", the rule definition is not passed on to subtypes.

Next is an optional description of the rule, enclosed in description tags. The description will be
shown in the measurement catalog (see Section 4.13 "The View 'Catalog'"). Section 8.6 "Writing
Descriptions" explains how to write rule descriptions.

Following the rule description is an XML element that defines the check the rule performs. There
are a number of procedures to choose from:

• violation - rules defining a condition expression that must not be violated.
• cycle - rules that check for the presence of cycles in a directed graph.
• projection - rules that report elements in a projection.
• valueset - rules that reports values occurring in a value set.

8.3.1 Violation

The "violation" procedure defines a condition expression for a model element. If the condition
evaluates to true, the model element violates the rule and is reported.

For example, consider a rule stating that an abstract class should have child classes. The abstract
class itself cannot be instantiated, so child classes are required for the class to become useful in the
system. That rule can be defined as follows:

<rule name="NoSpec" domain="class" category="Completeness" severity="2-med">
 <description>Abstract class has no child classes, must be
 specialized to be useful.</description>
 <violation condition="abstract='true' and NOC=0" />
</rule>

The condition expression condition checks if the class is abstract, and the number of children of
the class (metric NOC) is zero.

The "violation" procedure has two attributes;

• condition (required). Defines a condition expression (see Section 8.5.4 "Condition
Expressions"); the rule is violated if the condition expression is "true".

• value (optional). Specifies a metric expression that is evaluated for the violating model
element. The value is displayed to the user and can be used to provide additional details how
the model element violates the rule.

8.3.2 Cycle

The cycle procedure detects cycles in a directed graph. It does so by calculating the strongly
connected components of the graph. Within a strongly connected component (SCC), there exists a

© 2002-2021. All rights reserved. 102

SDMetrics ® User Manual 8.3 Definition of Design Rules

path from each node to every other node of the SCC, hence a cycle. A graph is acyclic if and only if
it has no SCCs.

You can use this procedure to check for cyclic dependencies between model elements. For example,
the following rule checks for cycles in the inheritance graph for classes:

<rule name="CyclicInheritance" domain="class" category="Inheritance"
 severity="1-high">
 <description>Class inherits from itself!</description>
 <cycle nodes="Parents" />
</rule>

The domain of the rule is "class", so the classes of the model constitute the nodes of the graph. The
required set expression nodes yields, for each node, the set of connected nodes to which there is an
edge. In our example, set "Parents" is the set of parents of the class.

To report the SCCs found, each model element in a SCC receives a label of the form "cyc# c (n
nodes)", where c is the number of the SCC, and n is the number of nodes in the SCC.

The rule reports a violation for each model element in each SCC. The value of the rule shown to the
user is the label of the model element. That way, users can tell which elements belong to which
connected component.

In some cases, you may only want to report SCCs of a certain size, for instance, SCCs with three or
more nodes. To this end, the cycle procedure has a second, optional attribute minnodes, which
specifies the minimum number of nodes an SCC must have to be reported. The default is 1 (nodes
having an edge back to themselves).

8.3.3 Projection for Rules

The projection procedure for rules calculates a set projection for a model element (see Section 8.2.1
"Projection"), and reports any elements contained in there as violation of the rule. Consider this
example:

<rule name="MissingGuard" domain="state" category="Correctness"
 severity="1-high">
 <description>If there are two or more transitions from a choice
 state, they all must have guards.</description>
 <projection precondition="kind='choice' and Outgoing>1"
 relation="transsource" target="transition" condition="Guards=0"
</rule>

Attributes relation, target, and condition define the projection, and are processed exactly
the same way as we know them from set projections. In the above example, the projection yields,
for a state, the set of outgoing transitions that have no guard.

In the context of a rule, a projection can have three additional attributes:

• precondition: A condition expression that is evaluated for the model element about to
be checked. If the condition is false, the rule will not be checked. In the example above, the

© 2002-2021. All rights reserved. 103

SDMetrics ® User Manual 8.3 Definition of Design Rules

rule is only applicable if the state is a choice state (kind='choice') and has at least two
outgoing transitions (Outgoing>1).

• value: defines the value of the rule that is displayed to the user. This is a metric
expression, and is evaluated for the model elements returned by the projection. If the
projection returns a valueset, no value needs to be specified - the value of the rule is the
value returned by the projection.

• mincnt: defines the minimum number of times an element must be included in the
resulting multiset to be reported. You can use this feature to find and report duplicates, as
shown in the next example. The default value is 1 (report all elements).

<rule name="DupName" domain="state" category="Correctness" severity="1-high">
 <description>The compound state has two or more states of
 the same name.</description>
 <projection relation="context" target="state" condition="name!=''"
 valueset="name" mincnt="2" />
</rule>

For rule "DupName", the projection defines the value set of names of the states of a compound state
(omitting anonymous states). By setting mincnt="2", only names that occur two times or more
will be reported.

Note the following restrictions that apply in the context of a rule projection:

• The resulting set is always a multiset.
• Attribute "recurse" is not allowed for rules. If you need the rule to operate on a recursively

defined set, define the set using a regular set projection (Section 8.2.1 "Projection"), and
feed that set into the rule projection with the "relset" attribute.

8.3.4 Valueset for Rules

The valueset procedure for rules calculates a value set for a model element (see Section 8.2.1.4
"Attribute "valueset""), and reports any elements contained in there.

For example, assume we have a value set "AttrNameSet" defined for classes, which is a multiset of
the names of the attributes of the class. We can then define a rule to check for duplicate names:

<rule name="DupAttrNames" domain="class" category="Correctness"
 severity="1-high">
 <description>The class has two or more attributes with
 identical names.</description>
 <valueset set="AttrNameSet" mincnt="2" />
</rule>

The procedure evaluates the set expression for the class, and reports all elements that occur at least
twice. The value of the rule is the value of the reported element in the value set; in our example this
is the duplicate attribute name. In addition to the set attribute, the valueset procedure accepts the
attributes mincnt and precondition, which have the same meaning as they have for rule
projections (see Section 8.3.3 "Projection for Rules").

© 2002-2021. All rights reserved. 104

SDMetrics ® User Manual 8.3 Definition of Design Rules

8.3.5 Word lists

One aspect of design rule checking involves the use of reserved keywords of the UML or
programming languages as names of model elements.

To check model element names for keywords, we define a list of keywords in the metric definition
file, and add a rule that checks for names on the list:

<wordlist name="CPP" ignorecase="false" >
 <entry word="auto" />
 <entry word="bool" />
 <entry word="break" />
 ...
</wordlist>

...

<rule name="Keyword" domain="class" category="Naming" severity="1-high">
 <description>Class name is a reserved C++ keyword.</description>
 <violation condition="name onlist CPP" value="name" />
</rule>

The word list is enclosed in wordlist tags. Attribute name defines a name for the keyword list,
which is used later to reference the list. Attribute ignorecase controls if uppercase and
lowercase letters should be distinguished when searching for a word on the list. For programming
languages that are case-insensitive, set ignorecase to "true". By default, ignorecase is
"false" (i.e., case-sensitive search).

The word list contains a list of entry elements. An entry has one required attribute word that
contains one word of the list.

To check if a word is on a list, there is a special operator onlist which you can use in condition
expressions (see Section 8.5.4 "Condition Expressions"). In the condition expression of rule
"Keyword" above, the left hand operator yields the name of the class, the right hand operator is the
name of the word list to check.

Note that while the main purpose of the word list feature is to define design rules checking for
keywords, there are other possible uses:

• Your development standards may forbid certain classes or data types to be used as types of
attributes, parameters, return types, etc. To define a rule that checks adherence to this
standard, create a word list with the names of the forbidden types, and then create rules to
check if the name of an attribute type etc. appears on the list.

• Word lists can also be used to simplify condition expressions of set or metric definitions. A
condition of the form val='string1'|val='string2'|...|val='stringn')
can be rewritten: define a word list containing the strings string1 to stringn, and
reduce the condition expression to val onlist wordlist.

© 2002-2021. All rights reserved. 105

SDMetrics ® User Manual 8.3 Definition of Design Rules

8.3.6 Exempting Approved Rule Violations

As described in Section 4.7.2 "Accepting Design Rule Violations", the SDMetrics rule checker uses
tagged values or comments to exempt a particular model element from a particular rule, so that such
an approved violation is no longer reported. Therefore, the rule checker needs to know which model
element type stores the tagged values or comments in the SDMetrics metamodel, and how to access
their contents.

This information is specified in two attributes of the XML root element of the metric definition file,
for example:

<sdmetrics version="2.1" ruleexemption="taggedvalue"
 exemptiontag="tagname" >
 ...

• ruleexemption specifies the model element type that stores the tagged values or comments
• exemptiontag is a metric expression that can be evaluated for the model elements specified

by the ruleexemption attribute. This expression should yield the text to be searched for
occurrences of strings of the form violates_rulename (where rulename is the name
of a design rule). For tagged values, this should be the tag, for comments, this should be the
body text of the comment.

The above example defines that tagged values are contained in meta model element "taggedvalue",
which has an attribute or metric "tagname" that stores the tag.

8.4 Definition of Relation Matrices

The metric definition file also hosts the definition of SDMetrics' relation matrices (see Section 4.10
"The View 'Relation Matrices'"). The SDMetricsML defines a relation matrix with an XML element
as follows:

<matrix name="matrixname" from_row_type="rowtype" to_col_type="columtype"
 row_condition="..." col_condition="..." >
 <description>Description of the matrix.</description>
 <'matrix definition' ...>
</matrix>

The attributes in the opening "matrix" tag are:

• name (required): the name of the matrix, used in the dropdown list of the relation matrix
view, and as filename when saving the relation matrix to files.

• from_row_type (required): the type of the source elements that will make up the rows of
the matrix (e.g., package, class, operation).

• to_col_type (required): the type of target elements that will make up the columns of the
matrix. This can be the same type as the row elements, or a different type.

• row_condition (optional): a condition expression (see Section 8.5.4 "Condition
Expressions") that must be true for a source element to be included in the matrix rows. If the
attribute is not specified, all source elements will be included.

© 2002-2021. All rights reserved. 106

SDMetrics ® User Manual 8.4 Definition of Relation Matrices

• col_condition (optional): a condition expression that must be true for a target element
to be included in the matrix columns. If the attribute is not specified, all target elements will
be included.

Following the matrix tag is an optional description of the matrix, enclosed in <description>
tags. The description is shown in the measurement catalog (see Section 4.13 "The View 'Catalog'").
Section 8.6 "Writing Descriptions" explains how to write descriptions for matrices.

The matrix definition is an XML element that defines the calculation procedure establishing the
relationship from source elements to target elements in the matrix. The available procedures are the
same ones that are available for set definitions (see Section 8.2 "Definition of Sets").

The definition below calculates a relation matrix showing UML abstractions for classes, i.e., which
classes implement which interfaces:

<matrix name="UMLAbstr" from_row_type="class" to_col_type="interface">
 <description>UML abstractions: implementation of interfaces.</description>
 <projection relation="client" target="abstraction" element="supplier" />
</matrix>

The evaluation procedure for this matrix definition is as follows. For a source element in a given
matrix row, the projection is evaluated, as described in Section 8.2.1 "Projection". The number of
occurrences of each target element in that projection is counted, and entered in the respective
column of the relation matrix. This procedure is repeated for all rows of the matrix. Thus, we obtain
in every table cell, a count of the number of relationship links from the source element to the target
element.

In the context of a relation matrix definition, the set projection attribute recurse is not allowed.

As another example, assume we have defined, for a class, the set "AssEl_out" of elements
associated with the class by bidirectional or navigable outgoing associations. We can then simply
create a relation matrix showing these associations as follows:

<matrix name="ICAssoc_Cls" from_row_type="class" to_col_type="class">
 <description>Import coupling via associations between classes.</description>
 <projection relset="AssEl_out" />
</matrix>

The evaluation procedure for this matrix definition is straightforward. For a source element in a
given matrix row, the specified set expression "relset" is evaluated, as described in Section 8.2.1
"Projection". For each target element, the value of the respective column of the relation matrix is the
cardinality of the target element in the set. This procedure is repeated for all rows of the matrix.

Continuing the association matrix example from above, we may want to reduce the size of the
matrix by dropping empty rows (classes without outgoing associations), and empty columns
(classes without incoming associations). Assume we have defined two helper metrics
"Num_AssEl_out" and "Num_AssEl_in", to count for a class the number of outgoing and incoming
associations, respectively. We add row and column conditions to the matrix definition as follows:

<matrix name="ICAssoc_Cls" from_row_type="class" to_col_type="class"
 row_condition="Num_AssEl_out>0" col_condition="Num_AssEl_in>0">
 <description>Import coupling via associations between classes.</description>

© 2002-2021. All rights reserved. 107

SDMetrics ® User Manual 8.4 Definition of Relation Matrices

 <projection relset="AssEl_out" />
</matrix>

Then, only classes with one ore more outgoing associations (Num_AssEl_out>0) will be
included in the rows of the matrix, which eliminates empty rows. Likewise, the column condition
Num_AssEl_in>0 eliminates empty columns.

© 2002-2021. All rights reserved. 108

SDMetrics ® User Manual 8.5 Expression Terms

8.5 Expression Terms

The entries in the metric definition file use three types of expression terms:

• metric expressions, which return a number or string value, or reference a model element
• set expressions, which return a set or multiset of model elements or metric values,
• condition expressions, which return a Boolean value (true or false).

The following subsections describe each of these expression types in an informal manner. A formal
definition is given in Appendix E: "Project File Format Definitions".

8.5.1 Constants and Identifiers

8.5.1.1 Constants

Expression terms frequently contain string and number constants.

A string constant is a sequence of characters, enclosed in single quotes, for example: 'public'. A
string constant may contain any sequence of digits (0-9), letters (a-z, A-Z), whitespace, and the
underscore (_).

Number constants (integer or floating point) are denoted in the usual way:

• preceded by an optional sign (+ or -)
• always use a dot as decimal point
• if you use scientific notation, separate the exponent from the mantissa with a 'e' or 'E', like

so: -0.234e-5 or 1.2E34

Examples of valid numbers are: 2, -1.3, 1e-10.

8.5.1.2 Identifiers

Identifiers denote the name of attributes of metamodel elements, the name of metrics, the name of
sets, or variables (which we will discuss in more depth in a moment).

An identifier is a letter or underscore (a-z, A-Z, _), followed by any sequence of digits (0-9), letters,
and underscores. Examples of valid identifiers are: i, visibility, NumOps, set2, Metric1_a,
_principal.

By convention, attribute names start with a lowercase letter, metric and set names with an uppercase
letter, and variables with an underscore. This avoids name conflicts between metrics or sets,
attributes, and variables.

© 2002-2021. All rights reserved. 109

SDMetrics ® User Manual 8.5 Expression Terms

Variables

Metric, set, and rule procedures can define variables that hold values with special meanings for the
calculation. We access those values in metric, set, and condition expressions. SDMetrics defines
two standard variables _self and _principal.

The variable _self yields the model element for which the expression is evaluated. The variable
_principal yields the model element for which the current metric, set, or rule is evaluated.
Variables _principal and _self need not be the same element. In fact, the variable
_principal should only be used if it is not the same element as _self.

Consider the following example. The metric counts, for a class A the supplier classes on which A
depends that have more operations than A:

<metric name="SuppliersWithMoreOperations" domain="class">
 <description>The number of classes this class depends on that have
 more operations.</description>
 <projection relation="depclient" target="dependency" element="depsupplier"
 eltype="class" condition="_self.NumOps > _principal.NumOps"/>
</metric>

The condition expression is evaluated, in turn, for each supplier class of class A. The variable
_self therefore refers to the supplier class. The variable _principal always refers to class A
for which the metric is calculated.

Note: the condition expression in the above example could have also been written as "NumOps >
_principal.NumOps", because the identifier NumOps will be interpreted as a metric of the
model element for which the expression is calculated. In fact, variable _self is rarely needed in
practice. Useful applications include

• for clarity/readability, as in the above example to make it clear which model elements are
being compared.

• to pass the element for which an expression is evaluated into a function, for example in
qualifiedname(_self).

8.5.2 Metric Expressions

A metric expression is an expression that returns a number, a string, or a model element that can be
used as the value of a metric. A metric expression is made up of constants, identifiers, and
operators. These are described in the following.

8.5.2.1 Mathematical Operators and Functions

The operators allowed in a metric expression are:

• a+b (a plus b, or, if a is a string, the string concatenation of a and b)
• a-b (a minus b)
• a*b (a multiplied by b)

© 2002-2021. All rights reserved. 110

SDMetrics ® User Manual 8.5 Expression Terms

• a/b (a divided by b)
• a^b (a to the power of b)
• a->b or a in b (the number of times a is contained in (multi-)set b; the alternate notation in

can be used to avoid conflicts with the special XML character >, see Section 8.5.5
"Expression Terms and XML")

The operators have the following precedence:

1. ^ and -> (or in)
2. the unary - and +
3. * and /
4. + and -

In addition, a number of math and special purpose functions are available.

Math functions

• ln(x): Returns the natural logarithm of x.
• exp(x): Returns Euler's number e raised to the power of x.
• sqrt(x): Returns the square root of x.
• abs(x): Returns the absolute value of x.
• ceil(x): Returns the smallest integer greater or equal to x.
• floor(x): Returns the largest integer smaller or equal to x.
• round(x): Returns the integer closest to x (round(x)=floor(x+0.5)).

Special purpose functions

• length(s): Returns the length of the string s.
• size(s): Returns the number of elements in set s (respecting cardinality if s is a multiset).
• flatsize(s): Returns the number of different elements in set s. For regular sets, this is

the same as size, for multisets, the cardinality of elements is disregarded.
• parsenumber(s): Returns the numerical value of a string that represents a number, e.g.

'3' or '-5.15'. The formatting for number constants applies (see Section 8.5.1.1 "Constants").
• tolowercase(s): Returns a string with all upper case letters in s changed to lower case.
• typeof(e): Returns the type of the model element e, as a string.
• qualifiedname(e): Returns the fully qualified name (see Section 4.2.2.1 "Qualified

Element Names") of the model element e.

Parentheses can be used as usual to override the default precedence. An example of a valid metric
expression is -0.5*NumOps^2+(self->AssocCls+ln(NumOps))*NOC/(1+NOD).

8.5.2.2 Special Operators

The following special operators help the navigation between model elements.

© 2002-2021. All rights reserved. 111

../../dist/web/manual/Constants.html

SDMetrics ® User Manual 8.5 Expression Terms

1. The "dot" operator

In an expression term, it is sometimes useful to refer to attribute or metric values of related
elements. This can be accomplished with the dot operator.

For example, to access the name of an operation's owner, we simply write "context.name". The left
hand side expression "context" refers to the owner of the operation, which has to be some model
element (e.g., a class). For that model element, the right hand side expression "name" is evaluated,
which yields the value of its attribute "name".

In general, evaluating expression a.b for a model element e works as follows:

• Evaluate metric expression a for model element e. This yields a second model element, e'.
• Evaluate metric expression b for model element e'. This is the result of a.b.
• If an error occurs during evaluation of expression a or b, or if expression a does not yield a

model element, no error is reported. Instead, an empty string is returned as value of a.b.

2. The "upto" operator

If we want to determine the package in which a class resides, we usually access it via its "context"
attribute. However, the owner of a class need not be a package. For an inner class, for example, the
"context" attribute yields its containing outer class.

The "upto" operator in the expression "context upto (typeof(self)='package')" follows the "context"
attribute, across several model elements if necessary, until it encounters a model element of type
package.

In general, evaluation of the expression a upto b for a model element e works as follows:

1. Evaluate metric expression a for model element e. Let e' denote the result of this evaluation.
2. If e' is not a model element, an empty string is returned as value of a upto b.
3. Evaluate condition expression b for model element e'.
4. If the result of b is true, then e' is returned as result of the metric expression a upto b.
5. Otherwise, set e=e' and repeat from step 1.

3. The "topmost" operator

Similar to the "upto" operator, the "topmost" operator successively evaluates a condition expression
for a chain of model elements. Whereas the "upto" operator returns the first element that fulfills the
condition expression, the "topmost" operator returns the last element in the chain that fulfills the
condition expression.

The "topmost" operator in the expression "context topmost (typeof(self)='package')" yields the top-
level package that contains the element.

In general, evaluation of the expression a topmost b for a model element e works as follows:

1. Set result to be the empty string.

© 2002-2021. All rights reserved. 112

SDMetrics ® User Manual 8.5 Expression Terms

2. Evaluate metric expression a for model element e. Let e' denote the result of this evaluation.
3. If e' is not a model element, return result as value of a upto b.
4. Evaluate condition expression b for model element e'.
5. If the result of b is true, set result=e'.
6. Set e=e' and repeat from step 2.

8.5.3 Set Expressions

A set expression is an expression that returns a set. It is made up of identifiers (names of sets), and
set operations. Identifiers have been described in Section 8.5.1.2 "Identifiers". The admissible set
operations are:

• A+B: the union of A and B.
If both A and B are regular sets, the resulting set will be a regular set containing the
elements that occur in A or in B or both.
If A or B is a multiset, the resulting set will be a multiset, respecting the cardinality of
elements. For example, if element e occurs five times in multiset A, and twice in multiset B,
its cardinality in the union is seven. If B is a regular set containing element e, the cardinality
of e in the union is six.

• A*B: the intersection of A and B.
If A or B is a regular set, the resulting set will be a regular set containing the elements that
occur both in A and in B.
If both A and B are multisets, the resulting set will be a multiset, respecting the cardinality
of elements. For example, if element e occurs five times in multiset A, and twice in multiset
B, its cardinality in the intersection is two.

• A-B: A without B.
If A is a regular set, the resulting set will be a regular set containing all elements that occur
in A but not in B.
If A is a multiset, the resulting set will be a multiset, respecting the cardinality of elements.
For example, if element e occurs five times in multiset A, and twice in multiset B, its
cardinality in the resulting set is three. If B is a regular set containing element e, the
cardinality of e in the resulting set is four.

• a.B: set B of model element a.
The dot operator (see Section 8.5.2.2 "Special Operators") is also available in set
expressions. The difference is that the right hand side, B, must be a set expression.
Evaluating expression a.B for model element e thus works as follows:

• Evaluate metric expression a for model element e. This yields a second model
element, e'.

• Evaluate set expression B for model element e'. This is the result of a.B.
• If an error occurs during evaluation of expression a or B, or if expression a does not

yield a model element, no error is reported. Instead, a regular empty set is returned as
value of a.B.

The dot operator has precedence over the * operator, which has precedence over the + and -
operators. A+B-C is equivalent to (A+B)-C, not A+(B-C). Use parenthesis to enforce the intended
precedence.

An example for a valid set expression is ((A+B)-context.C)*D.

© 2002-2021. All rights reserved. 113

SDMetrics ® User Manual 8.5 Expression Terms

8.5.4 Condition Expressions

A condition expression is an expression that returns a Boolean value (true or false). Condition
expressions are made up of relational operators comparing metric expressions, Boolean functions,
and logical operators combining condition expressions.

8.5.4.1 Relational Operators

The relational operators to compare metric expressions (as in Section 8.5.2 "Metric Expressions")
are:

• a=b (equals)
• a!=b (not equals)
• a<b or a lt b (less than; the alternate notation lt can be used to avoid conflicts with

the special XML character <, see Section 8.5.5 "Expression Terms and XML")
• a<=b or a le b (less or equal)
• a>b or a gt b (greater than)
• a>=b or a ge b (greater or equal)

These operators apply to numbers (numerical ordering) and string values (lexicographical ordering).

In addition, you can use the following operators on the indicated types:

• a startswith b (true if string a starts with string b)
• a endswith b (true if string a ends with string b)
• a onlist b (true if string a is on word list b)
• a->b or a in b (true if element or value a is contained in set b)

Examples of condition expressions are:

• visibility!='public'
• (NumOps+NumAttr)<=40
• (NumOps+NumAtrt) le 40
• name startswith 'get'
• 'getID' in OperationNameSet

8.5.4.2 Boolean Functions

Boolean functions operating on strings:

• startswithcapital(s) - true if string s starts with a capital letter or is empty
• startswithlowercase(s) - true if string s starts with a lower case letter or is empty
• islowercase(s) - true if all letters in string s are lower case or if s is empty

Boolean functions operating on sets:

© 2002-2021. All rights reserved. 114

SDMetrics ® User Manual 8.5 Expression Terms

• isunique(s) - true if s is a regular set or if s is a multiset that contains no element more
than once.

Boolean functions operating on model elements:

• instanceof(e,s) - true if the type of model element e is s or a subtype of s. For
example, instanceof(context, 'package') is true if the owner of the element is a package or a
subtype of package.

8.5.4.3 Logical Operators

Logical operators can be used to combine condition expressions. The logical operators allowed are

• A & B (or A and B to avoid conflict with the XML special character &, see Section 8.5.5
"Expression Terms and XML") - true if both condition expressions A and B are true, else
false.

• A | B - true if at least one condition expression A or B is true, else false.
• !A - true if A is not true, else false.

As usual, ! has precedence over & which has precedence over |.

An example of a condition expression with logical operators is: (NumOps>5) & (!(NumAttr=3 |
islowercase(name))

8.5.5 Expression Terms and XML

Expression terms are always defined as values of XML attributes. Expression terms use characters
that have special meanings in the XML:

• Single quotes for string constants.
In the XML, attribute values can be delimited by double quotes (") or single quotes ('). If an
expression contains string constants, it must be delimited by double quotes in the metrics
definition file (e.g. condition="visibility='public'", not
condition='visibility='public''). Otherwise, XML parsers will report an
error.

• operators &, <, and >.
The and operator & is an escape character in the XML. Likewise, the operators < and > are
used in the XML to delimit XML tags. Some XML parsers will report an error if these
characters are used in XML attributes. To remedy this, you have two options:

• Denote the characters by their escape sequence, if your XML editor does not
automatically translate the characters for you:
& - &
< - <
> - >

• Use the alternative notations:
and instead of &

© 2002-2021. All rights reserved. 115

SDMetrics ® User Manual 8.5 Expression Terms

lt and le instead of < and <=
gt and ge instead of > and >=
in instead of ->

8.6 Writing Descriptions

The measurement catalog (see Section 4.13 "The View 'Catalog'") provides detailed descriptions of
the design metrics, rules, and relation matrices, complete with literature references and a glossary.
These descriptions are provided by the definitions in the metric definition file.

Below is an example of a full-fledged metric description. Descriptions of rules and matrices follow
the exact same scheme.

<metric name="DIT" domain="class">
<description>The depth of the class in the inheritance tree.((p))
This is calculated as the longest glossary://Path/path/ from the class to
the root of the inheritance tree. The DIT for a class that has no
parents is 0.((p))
((ul))
((li))Defined in ref://CK94/.
((li))See also metric://class/CLD/.
((/ul))
</description>
<projection relation="genchild" target="generalization" element="genparent"
 eltype="class" nesting="true"/>
</metric>

<reference tag="CK94">S. Chidamber, C. Kemerer, "A Metrics Suite
 For Object Oriented Design", IEEE Trans. Software Eng., vol. 20, no. 6,
 pp. 476-493, 1994.
</reference>

<term name="Path">A sequence of adjacent nodes in a graph. The
 sequence of nodes n(1), n(2), ..., n(m) is a path if there is an
 edge from n(i) to n(i+1) for all i from 1 to m-1.
<term>

Below we explain the various features available for writing descriptions.

HTML markup

The detailed description is meant to be rendered in HTML. Therefore, you can use HTML markups
to format your text. However, because the description is embedded in an XML file, you cannot use
the plain HTML tags. They would interfere with the XML structure. Instead of enclosing your
HTML tags with the usual < and > brackets, use two subsequent opening and closing parentheses,
like so: Text in ((i))italics((/i)) or ((b))boldface((/b)).

The example for metric DIT above uses paragraphs and bulleted lists to format the text.

Brief description and full description

© 2002-2021. All rights reserved. 116

SDMetrics ® User Manual 8.6 Writing Descriptions

The first sentence of the description should be a short definition that states the basic idea what the
metric (or rule or matrix) is about. It should be brief enough to fit in a single line (about 80
characters, but that is no hard limit).

This first sentence must be terminated by a period, and must not use any HTML markup. The brief
descriptions are used in various windows of SDMetrics' GUI, to provide short explanations of
metrics, rules, and matrices. The description then continues with additional explanations, and notes
about the metric. Together with the brief description, this constitutes the full description shown in
the measurement catalog.

Cross-references

You can reference other metrics, rules, or matrices in the description.

• To cross-reference a metric, use a "metric locator" of the form
metric://<domain>/<name>/. For example, to cross-reference a metric NumOps for
elements of type class, write metric://class/NumOps/. Note the terminating slash
at the end of the locator.

• Likewise, to cross-reference a rule, use a locator of the form
rule://<domain>/<name>/. For example, rule CyclicInheritance for classes is
referenced by rule://class/CyclicInheritance/.

• To cross-reference a relation matrix, use a locator of the form matrix://<matrix>/. A
matrix named "Associations" would be referenced by matrix://Associations/.

In the measurement catalog display, the locator will be replaced by an HTML hyperlink that takes
the user to the specified target.

Literature references

To provide literature references, you define a bibliographic citation as in the above example for
metric DIT. The citation is enclosed in a reference XML element. The element has one required
attribute, tag, which provides a handle for the citation.

You can then reference the citation in your metric, rule, and matrix descriptions with a locator of the
form ref://<reference_tag>/, for example ((li))Suggested in ref://CK94/.
((/li)). In the measurement catalog display, the locator will be replaced by a hyperlink that
takes the user to the bibliographic citation of the specified reference.

Glossary terms

If your description uses any terms that you feel need additional explanation, you can define these
terms in a glossary. The above example for metric DIT shows a definition for the term "Path".

The term definition is enclosed in a term XML element. The element has one required attribute,
name, which is the term that is defined. You can then use the term in your description with a
locator as follows:

glossary://<Nameofterm>/<hyperlinktext>/

© 2002-2021. All rights reserved. 117

SDMetrics ® User Manual 8.6 Writing Descriptions

In the full description as shown to the user, the locator will be replaced by a hyperlink that takes the
user to the definition of the term. If the name of the glossary term and the hyperlinked text to be
shown are identical, you can leave the hyperlinked text empty, like so: This is a
glossary://WFR// of the UML (note the two slashes after "WFR").

8.7 Defining Metrics for Profiles

8.7.1 Profiles in UML 2

UML2 profiles provide a mechanism to extend and adapt the UML metamodel for particular
domains, platforms, or methods. A UML profile defines a set of stereotypes, which extend existing
UML meta-classes by adding new properties (via "tagged values"), imposing additional constraints,
and providing alternative graphical representations for the extended elements.

The profile mechanism is a lightweight extension mechanism; it does not allow for modifying
existing meta-classes or creating new, "first-class citizen" meta-classes in the UML metamodel.
UML profiles can, in theory, be easily imported and exchanged between UML tools, and
dynamically applied, combined, and retracted from a UML model.

The most prominent example of a UML profile is probably the Systems Modeling Language
(SysML), maintained by the Object Management Group [OMG10]. SysML is an extension of the
UML to better support systems engineering. Other profiles maintained by the OMG include
MARTE (Modeling and Analysis of Real-time and Embedded Systems), UTP (UML Testing
Profile), and SoaML (Service oriented architecture Modeling Language).

How are UML profiles relevant to design quality measurement?

If you extensively use profiles in your models, it is useful to define design metrics and rules that
take profile extensions into account. A SysML model, for example, contains elements such
"blocks", "requirements", or "test cases", and relationships between them such as "allocate",
"refine", or "verify", all defined by the SysML profile. As a SysML user, you may therefore be
interested in the number of blocks and requirements in the packages, measure the size of blocks in
terms of their part-, reference-, and value-properties, define rules such as "requirements that are not
further decomposed or refined must be verified by a test case", or create a relation matrix showing
the allocation of activities to blocks.

8.7.2 Profiles in SDMetrics

SDMetrics uses a simplified version of the UML metamodel, and is not a full-fledged MOF
implementation. SDMetrics therefore cannot simply import any existing profiles and apply them to
the models. Unlike the UML's lightweight approach to metamodel extensions, SDMetrics takes a
heavyweight approach of creating new meta-classes in the metamodel. To account for a profile
extension requires

© 2002-2021. All rights reserved. 118

SDMetrics ® User Manual 8.7 Defining Metrics for Profiles

• an extension of the SDMetrics metamodel
• XMI transformations for the metamodel extensions
• definition of custom metrics and rules that take the extensions into account.

Creating these definitions is a manual process, but it only has to be done once for each profile. After
that, you can analyze models using the profile just like regular models. In the remainder of this
section we'll see how profile extensions are serialized to XMI, and discuss the options for
developing profile extensions for SDMetrics. Using the example of SysML requirements, we show
how to add a "requirement" class to SDMetrics' metamodel, define an XMI transformation for it,
and create metrics for requirements.

8.7.3 XMI Serialization of Profile Extensions

To facilitate the tracing of system requirements, the SysML defines requirement diagrams to
represent the textual requirements of a system. Formally, a SysML requirement is a stereotype that
extends meta-class "class", and defines two new properties "Id" and "Text" to capture a human-
readable ID and summary text of the requirement.

The following extract of an XMI file shows a SysML model with a package named
"Specifications". The package contains a requirement "XYZ" with Id "R1" and text "The system
shall do XYZ":

<xmi:XMI xmi:version="2.1" ...>
 <uml:Model name = "Sample" xmi:id = "xmi1">
 <packagedElement xmi:type="uml:Package" xmi:id="xmi2" name="Specifications">
 <packagedElement xmi:type="uml:Class" xmi:id="xmi3" name="XYZ" />
 </packagedElement>
 ...
 </uml:Model>
 <sysml:Requirement base_Class="xmi3" xmi:id="xmi7"
 Text="The system shall do XYZ" Id="R1" />
</xmi:XMI>

As a consequence of the UML's lightweight extension approach, two XML elements are needed to
represent the requirement:

• A regular UML Class with the name "XYZ". This element represents the requirement in the
model.

• A SysML Requirement that references class "XYZ" via the attribute "base_Class", and
provides the values for the new properties "Id" and "Text". This element represents the
application of the "Requirement" stereotype to class "XYZ". Note that the element is outside
the model.

SDMetrics offers three options to deal with such XMI files:

• profile extensions with regular model elements
• extension references without inheritance
• extension references with inheritance

© 2002-2021. All rights reserved. 119

SDMetrics ® User Manual 8.7 Defining Metrics for Profiles

8.7.4 Profile Extensions with Regular Model Elements

In our first and simplest approximation, we just define a new model element type "requirement" in
our SDMetrics metamodel (see Section 7.1 "SDMetrics Metamodel") to store the information from
the <sysml:Requirement> XML element:

<modelelement name="requirement">
 <attribute name="base" type="ref">The extended class.</attribute>
 <attribute name="text">Text of the requirement.</attribute>
 <attribute name="reqid">ID of the requirement in the model.</attribute>
</modelelement>

The XMI transformation to process the <sysml:Requirement> XML element looks like this:

<xmitransformation modelelement="requirement" xmipattern="sysml:Requirement">
 <trigger name="base" type="attrval" attr="base_Class" />
 <trigger name="text" type="attrval" attr="Text" />
 <trigger name="reqid" type="attrval" attr="Id" />
</xmitransformation>

With these definitions in place, the SysML requirement of the SysML model is represented by two
elements in SDMetrics: one "class" element and one "requirement" element.

How do we know if a class in the model represents a SysML requirement? The class represents a
SysML requirement if there is a "requirement" element in the model whose reference attribute
"base" points to the class. Using the "filtervalue" procedure (Section 8.1.7 "Value Filter"), we can
define a "helper" metric that yields the requirement element extending the class, if one exists:

<metric name="Reqmt" domain="class" internal="true">
 <filtervalue relation="base" target="requirement" />
</metric>

We can then use this metric to identify classes that represent requirements. For example, to count
the number of requirements in a package, we count all classes where metric "Reqmt" is not empty:

<metric name="ReqCount" domain="package">
 <projection relation="context" target="class" condition="Reqmt!=''" />
</metric>

8.7.5 Extension References without Inheritance

SysML requirements are often decomposed into sub-requirements that partition the containing
requirement. The number of sub-requirements of a requirement is therefore a potentially useful size
measure.

The following XMI serialization of a SysML model contains a requirement "ABC" with Id "R2".
The requirement is decomposed into two sub-requirements "A" and "B" with Ids "R2.1" and
"R2.2", respectively:

© 2002-2021. All rights reserved. 120

SDMetrics ® User Manual 8.7 Defining Metrics for Profiles

<xmi:XMI xmi:version="2.1" ...>
 <uml:Model name = "Sample" xmi:id = "xmi1">
 <packagedElement xmi:type="uml:Package" xmi:id="xmi2" name="Specifications">
 <packagedElement xmi:type="uml:Class" xmi:id="xmi3" name="XYZ" />
 <packagedElement xmi:type="uml:Class" xmi:id="xmi4" name="ABC">
 <nestedClassifier xmi:type="uml:Class" xmi:id="xmi5" name="A" />
 <nestedClassifier xmi:type="uml:Class" xmi:id="xmi6" name="B" />
 </packagedElement>
 </packagedElement>
 ...
 </uml:Model>
 <sysml:Requirement base_Class="xmi3" xmi:id="xmi7"
 Text="The system shall do XYZ" Id="R1" />
 <sysml:Requirement base_Class="xmi4" xmi:id="xmi8"
 Text="The system shall do such and such" Id="R2" />
 <sysml:Requirement base_Class="xmi5" xmi:id="xmi9"
 Text="The system shall do A" Id="R2.1" />
 <sysml:Requirement base_Class="xmi6" xmi:id="xmi10"
 Text="The system shall do B" Id="R2.2" />
</xmi:XMI>

From the XMI serialization we can see that the SysML uses class nesting to model requirement
decomposition. The class to represent the decomposed requirement owns the classes representing
the sub-requirements as nested classifiers. We could therefore define a metric counting the sub-
requirements like so:

<metric name="SubRequirements" domain="class">
 <projection relset="nestedclassifiers" target="class" condition="Reqmt!=''" />
</metric>

Defining the metric with the domain "class" has the disadvantage that the metric is calculated for all
classes, even those that do not represent requirements at all. A better solution is to define the metric
for the domain "requirement":

<metric name="SubReqCount" domain="requirement">
 <projection relset="base.nestedclassifiers" target="class"
 condition="Reqmt!=''" />
</metric>

The output of this metric in the metric data tables is not very satisfactory, though:

Figure 36: Metric output for plain requirement elements

Because the requirement elements in the model are unnamed and outside the scope of the UML
model, we cannot tell from the metric output to which requirement the data belongs.

© 2002-2021. All rights reserved. 121

SDMetrics ® User Manual 8.7 Defining Metrics for Profiles

To improve this situation, SDMetrics' metamodel facility provides extension references. If the
extending model element contains an extension reference, SDMetrics moves the extending model
element into the same namespace as the extended model element, and copies the name from the
extended element.

To use this feature for our SysML requirements, we change the type of cross-reference "base" from
"ref" to "extref", thus declaring it an extension reference:

<modelelement name="requirement">
 <attribute name="base" type="extref" />
 <attribute name="text" />
 <attribute name="reqid" />
</modelelement>

This instructs SDMetrics to move the requirement model elements into the same namespace as the
class they extend, and copy the name of the extended class. Each requirement element thus has the
same owner and the same name as the class that represents the requirement. With this modification,
the extending elements are easier to handle.

One immediate benefit of extension references is that the elements are easier to trace in the metric
data tables:

Figure 37: Metric output for requirements with extension reference

Another benefit is that we can simplify some metric and rule definitions. Take for example the
metric "ReqCount" defined earlier to count the number of requirements in a package. Because the
packages now own the requirement elements, we can define the metric in a more straightforward
manner without resorting to 'helper' metrics:

<metric name="ReqCount" domain="package">
 <projection relation="context" target="requirement" />
</metric>

8.7.6 Extension References with Inheritance

For the purpose of defining design metrics and rules, it is still cumbersome to have two model
elements in the model to logically represent a single element. Consider for example metric
"NumCls" for packages to count the number of classes in the package. This is the definition of the
metric that ships with SDMetrics ever since its first release in 2002:

© 2002-2021. All rights reserved. 122

SDMetrics ® User Manual 8.7 Defining Metrics for Profiles

<metric name="NumCls" domain="package">
 <projection relation="context" target="class" />
</metric>

Applied to our sample package with four requirements, this metric will include the class elements to
represent the requirements in its class count. Depending on our measurement goals, this may not be
what we want. We could of course adjust the definition of the metric to only count classes that do
not represent requirements:

<metric name="NumClsExceptRequirements" domain="package">
 <projection relation="context" target="class" condition="Reqmt=''"/>
</metric>

This approach is possible, but ugly. If we add support for SysML blocks or other types that also
extend "class", we would need to adjust the definition of metric again to exclude classes
representing blocks, etc.

To better deal with these issues, SDMetrics provides a mechanism to merge the extended element
with its extending element to form a single model element that combines all the information from
both elements. To enable this mechanism, we have to define the type of the extending element as a
subtype of the extended element.

In our SysML requirements example, we therefore change the definition of type "requirement" by
declaring its parent to be type "class":

<modelelement name="requirement" parent="class">
 <attribute name="base" type="extref" />
 <attribute name="text" />
 <attribute name="reqid" />
</modelelement>

If SDMetrics finds a model element of type t ("requirement" in our example) with an extension
reference, and the type of the extended element is a supertype of t ("class" in our example), then
SDMetrics will merge the two elements into one element of type t. The merged element copies all
attribute values of the extended element, and the extended element is removed from the model. We
are left with one element of type t that assumes the place of the extended element.

Applied to our sample model and XMI file, we end up with a model that contains four requirement
elements, no classes, and maintains the expected containment hierarchy:

© 2002-2021. All rights reserved. 123

SDMetrics ® User Manual 8.7 Defining Metrics for Profiles

Model "Sample"
 Package "Specifications"
 Requirement "XZY" with Id "R1"
 Requirement "ABC" with Id "R2"
 Requirement "A" with Id "R2.1"
 Requirement "B" with Id "R2.2"

The package "Specification" no longer contains elements of type "class", and metric NumCls will
yield 0. Model element type "requirement" has become a full, first-class citizen. We can identify
requirements simply by the type of the model element, the need for helper metrics is eliminated.

Using reference extensions with inheritance, it is very easy to define metrics that take more complex
relationships into account. For example, the SysML defines a relationship "satisfy" to identify the
model elements that fulfill a given requirement. The more elements are needed to satisfy a
requirement, the more difficult the requirement will be to change. We are therefore going to define a
metric that counts the number of elements that satisfy a requirement.

Technically, the SysML defines the "satisfy" relationship as a stereotype that extends the meta-class
"abstraction". We therefore create a new model element type "satisfy" with an extension reference
as a subtype of "abstraction" (see Appendix A.2 "Metamodel for UML 2.x"):

<modelelement name="satisfy" parent="abstraction">
 <attribute name="base" type="extref" />
</modelelement>

The type "satisfy" inherits the multi-valued reference attributes "client" and "supplier" from
"abstraction". For the XMI transformation, we only have to provide a trigger for the new extension
reference "base":

<xmitransformation modelelement="satisfy" xmipattern="sysml:Satisfy">
 <trigger name="base" type="attrval" attr="base_Abstraction" />
</xmitransformation>

We can then define our metric to count the number of elements that satisfy a requirement:

<metric name="Satisfiers" domain="requirement" category="Coupling (export)">
 <description>The number of elements that satisfy this
requirement.</description>
 <projection relation="supplier" target="satisfy" sum="size(client)"/>
</metric>

8.7.7 Tips on Creating Metrics and Rules for Profile Extensions

We have discussed three options to deal with stereotypes in UML profiles:

• option 1: using regular model elements
• option 2: using extension references without inheritance
• option 3: using extension references with inheritance

Here are some guidelines to decide which option to use for a given stereotype.

© 2002-2021. All rights reserved. 124

SDMetrics ® User Manual 8.7 Defining Metrics for Profiles

• How often do you need to distinguish elements to which the stereotype is applied from
elements of the same type to which the stereotype is not applied?

If, for example, the distinction between SysML FlowPorts and plain UML ports is only
relevant for a few of your metrics and rules, and you can treat them equally as plain UML
ports most of the time, option 1 or 2 is appropriate.

• Do you need to identify the extension elements in the metric, rule, or relation matrix data
tables?

If so, you have to choose option 2 or 3.

• How much does the stereotype application change the "character" or "nature" of the
extended model element?

In case of SysML requirements, for example, the characteristic of the "class" element
changes considerably. Unlike regular classes, requirements can't have operations or
attributes, do not participate in associations, can't be generalized, and are usually not
instantiated. They are actually not much like classes at all.

In such situations, option 3 is appropriate, because it eliminates the "class" element
representing the requirement from the model, and existing metrics and rules that involve
classes will ignore the extended element.

• How important or central is the concept of the extension in the profile?

Like requirements, a SysML block extends UML meta-class "class". Unlike requirements,
however, SysML blocks maintain most of the class features from UML. Yet, as blocks are
the central modular structure units of the SysML, the set of metrics and rules to calculate for
blocks will probably be quite different from the set of class metrics and rules. Option 3 is
therefore the best choice for the central concepts of the profile.

• How many meta-classes does the stereotype extend?

If the stereotype extends two or more meta-classes (for example, SysML TestCase can
extend "operation" or "behavior"), you can use option 3 for at most one of the extension, and
must use option 1 or 2 for all others. This is because SDMetrics' metamodeling facility does
not support multiple inheritance.

Using extension references with inheritance, the inheritance mechanism plays a more important role
in the SDMetrics metamodel. With the support for profiles, a number of features were introduced to
provide more flexibility dealing with inheritance:

• inheritance of metric, set, and rule definitions to pass selected metrics, sets, and rules on to
descended types (see e.g. Section 8.1 "Definition of Metrics" for metric inheritance)

• metrics or sets involving recursion or nesting extend their recursion to compatible super- and
subclasses (see e.g. Section 8.1.1.8 "Attribute "recurse"")

• filtering for subtypes with the "target" and "eltype" filter attributes (see Section 8.1.1.3
"Filter Attribute "target"").

© 2002-2021. All rights reserved. 125

SDMetrics ® User Manual 8.7 Defining Metrics for Profiles

• new function "instanceof" (see Section 8.5.4.2 "Boolean Functions")

Where to go from here

On the SDMetrics web site, you can download a set of project files for SysML 1.2, with metrics and
rules that cover block definition diagrams, internal block diagrams, parametric diagrams, and
requirement diagrams.

© 2002-2021. All rights reserved. 126

SDMetrics ® User Manual 9 Extending the Metrics and Rule Engine

9 Extending the Metrics and Rule Engine
The previous section showed how to use the XML-based SDMetrics Markup Language
(SDMetricsML) to calculate new metrics and rules of your own. The SDMetricsML is flexible
enough to cover most measurement needs. Defining new metrics is quick and easy to do, and only
requires a simple text editor.

The SDMetricsML definitions are read by the "metrics engine", a subsystem of SDMetrics that
interprets the metric definitions and calculates the metrics for a UML model accordingly. Likewise,
the "rule engine" checks the design rules defined through SDMetricsML for a UML model.

Occasionally, the capabilities of the SDMetricsML/metrics/rule engine may be insufficient or
inefficient for your measurement needs. For these situations, the metrics engine and rule engine
provide a plugin mechanism to extend their calculation capabilities and the SDMetricsML. The
plugins add

• new metric, set, or rule checking procedures that implement new or special purpose
algorithms,

• new scalar, set, or Boolean functions that implement new operations on numbers, strings, or
sets.

Users can then write SDMetricsML definitions as usual, using the new procedures and functions.

This section describes how to develop such plugins for the metrics and rule engine. The plugins are
implemented in the Java programming language. Writing a plugin thus requires Java skills and a
Java compiler.

9.1 Metric Procedures

9.1.1 Conception of a New Metric Procedure

Assume we wish to calculate a "lack of cohesion" style metric similar to LCOM proposed by
Chidamber and Kemerer in [CK94]. These metrics count pairs of elements that have or have not
something in common, for instance, the number of pairs of methods in a class that use no common
attributes, or, with regards to applicability to UML designs, the number of pairs of operations of a
class that do not have at least one parameter type in common. In the latter case, just obtaining the
set of parameter types of an operation is easy enough:

<set name="ParaTypeSet" domain="operation">
<description>The set of parameter types of an operation.</description>
<projection relation="context" target="parameter" element="parametertype" />
</set>

What we would need then is a metric that takes each pair of operations of a class, and counts those
pairs that have a parameter type in common. None of the existing metric procedures in SDMetrics
accomplish this, but if we had such a procedure, the definition of the metric could look something
like this:

© 2002-2021. All rights reserved. 127

SDMetrics ® User Manual 9.1 Metric Procedures

<metric name="LCOM_Parametertypes" domain="class">
<description>Lack of cohesion in operations based on operation
 parameter types.</description>
<pairwise relation="context" target="operation"
 paircondition="size(_first.ParaTypeSet * _second.ParaTypeSet)=0" />
</metric>

The idea is that the metric obtains the set of operations of a class (as we would in a standard
projection), and then evaluate the "paircondition" expression for each operation pair. The variables
"_first" and "_second" in the pair condition refer to the first and second operation of the pair. The
given expression evaluates to true if the intersection of the parameter types of the operations at hand
is empty.

To make the procedure more flexible, we could have it support a few more attributes:

• Users should be able to specify the set to operate on as they are used to from the "projection"
procedure (Section 8.1.1 "Projection"), using either the "relation" or "relset" attribute, and
the standard filter attributes "target", "element", etc.

• The procedure should provide an option to not only yield pairs of elements of a set, but
tuples. For pairs, only one combination of elements A and B will be reported as either
{A,B} or {B,A}, the order of elements carrying no semantics. For tuples, both
combinations (A,B) and (B,A) will be reported, distinguishing the order of elements. We
therefore define an optional attribute "tuples" that takes values "true" or "false" to indicate if
we want to access pairs (value "false", also the default) or tuples (value "true").

• The procedure should optionally report the combination of an element with itself. We
therefore define an optional attribute "withself" that takes values "true" or "false". When set
to "true", the procedure additionally reports one combination {A,A} for each model
element.

• In addition to just counting the number of pairs/tuples that satisfy the pair condition, the
procedure should support the "sum" and "stat" attributes as we know them from the
"projection" and "subelements" procedure (see Section 8.1.1.7 "Attributes "sum" and
"stat""). When "sum" is set, the specified expression will be evaluated for each reported pair,
and the metric will report the sum of all values (or the maximum/minimum value when
attribute "stat" is set accordingly).

• The "paircondition" attribute should be optional. If not set, all reported combinations will be
processed.

9.1.2 Implementation of the Metric Procedure

The following listing shows the complete implementation of the new metric procedure outlined in
the previous section. Because we heavily utilize the API of the metrics engine, which already
provides much of the functionality, the implementation of the procedure is quite compact, and
essentially contains a nested loop to generate the element pairs.

 packacke com.acme;
 import java.util.Collection;
 import java.util.Comparator;
 import com.sdmetrics.math.ExpressionNode;
 import com.sdmetrics.metrics.*;
 import com.sdmetrics.model.ModelElement;

01 public class MetricProcedurePairwise extends MetricProcedure {

© 2002-2021. All rights reserved. 128

SDMetrics ® User Manual 9.1 Metric Procedures

 @Override
02 public Object calculate(ModelElement element, Metric metric)
 throws SDMetricsException {
03 ProcedureAttributes attributes = metric.getAttributes();

04 Variables vars = new Variables(element);
05 Collection<ModelElement> set =
 getRelationOrSet(element, attributes, vars);
06 if (set == null)
07 return Integer.valueOf(0);

08 ExpressionNode pairCondition = attributes.getExpression("paircondition");
09 boolean allTuples = attributes.getBooleanValue("tuples", false);
10 boolean withSelf = attributes.getBooleanValue("withself", allTuples);

11 FilterAttributeProcessor fap = getFilterAttributeProcessor(attributes);
12 SummationHelper sum = new SummationHelper(getMetricsEngine(), attributes);
13 Comparator<ModelElement> comparator = ModelElement.getComparator();

14 for (ModelElement first : fap.validIteration(set, vars)) {
15 vars.setVariable("_first", first);
16 for (ModelElement second : fap.validIteration(set, vars)) {
17 int comp = comparator.compare(first, second);
18 if (comp == 0 && !withSelf)
19 continue;
20 if (comp > 0 && !allTuples)
21 continue;

22 vars.setVariable("_second", second);
23 if (pairCondition == null
 || evalBooleanExpression(element, pairCondition, vars)) {
24 sum.add(second, vars);
 }
 }
 }
25 return sum.getTotal();
 }
}

Let's go through the salient points of this implementation line by line:

• 01: All metric procedure classes must have public visibility, a default or no-argument
constructor, and extend the abstract class
com.sdmetrics.metrics.MetricProcedure.

• 02: The base class defines the abstract method calculate which we must override. Input
parameters are the model element and the metric to be calculated.

• 03: Class ProcedureAttributes provides access to the attribute values in the metric
definition.

• 04: Class Variables contains the values of variables to be used in metric expressions. In
the constructor, we specify the principal model element for which the metric is calculated.

• 05: Method getRelationOrSet is a helper method provided by the base class to
evaluate the "relation" or "relset" attributes (whichever was specified) as we know them
from metric and set projections.

• 08: Class ExpressionNode represents metric, set, or condition expressions (see
Section 8.5 "Expression Terms"). Here, we obtain the condition expression of the
"paircondition" that we defined.

© 2002-2021. All rights reserved. 129

SDMetrics ® User Manual 9.1 Metric Procedures

• 09-10: Here we obtain the values of attributes "tuples" and "withself", providing default
values when the attributes are not set.

• 11: Class FilterAttributeProcessor is a helper class to process the standard filter
attributes ("target", "targetcondition", "element", "eltype", "condition", and "scope"). The
method getFilterAttributeProcessor() yields an instance of this class to apply
the filter attributes for the metric at hand.

• 12: Class SummationHelper is a helper class that processes the "sum" and "stat"
attributes.

• 14: We use the filter attribute processor from line 11 to iterate over all elements specified via
the "relation" or "relset" attribute from line 5. The filter attribute processor automatically
discards elements which should be ignored as per the element filter settings (see
Section 4.2.2 "Specifying Filters") for us, applies the filter attributes "target", "element" etc.,
and returns an iteration over the resulting elements.

• 15: We define a variable "_first" with the first element of the pair/tuple as value.
• 16-21: In a nested loop, we iterate again over all elements. Depending on the values of

attributes "tuples" and "withself", we skip unwanted pairs/tuples.
• 22: At this point we have identified a relevant pair or tuple, and we define a variable

"_second" with the second element of the pair/tuple as value.
• 23: We evaluate the "paircondition" (if set), making sure to pass the values of the "_first"

and "_second" variables into the evaluation. Method evalBooleanExpression
evaluates condition expressions for model elements and returns a simple boolean value
with the result.

• 24: When the "paircondition" yields true (or was not set), we use the summation helper from
line 12 to either increase the result value by one or process the "sum" and "stat" attributes if
they were specified. Again, we pass the "_first" and "_second" variables to the summation
helper so that the values are available for the evaluation of the "sum" attribute.

• 25: We return the total as value of the metric.

9.1.3 Using the New Metric Procedure

Before we can use our new metric procedure, we must first register it with the metrics engine. We
add the following XML element to our metric definition file:

<metricprocedure name="pairwise"
 class="com.acme.MetricProcedurePairwise" />

Attribute name defines the name to denote the metric procedure in subsequent metric definitions,
attribute class defines the fully qualified name of the metric procedure class.

We can then define metrics using our newly created metric procedure. Here's another example of a
LCOM-style cohesion metric:

<metric name="LCOC_AttributeTypes" domain="package">
<description>The maximum number of attribute types shared by a pair
 of classes in a package.</description>
<pairwise relation="context" target="class"
 sum="size(_first.AttrTypeSet * _second.AttrTypeSet)" stat="max" />
</metric>

© 2002-2021. All rights reserved. 130

SDMetrics ® User Manual 9.1 Metric Procedures

For SDMetrics to find our new metric procedure, we have to ensure that the class is included in the
class path when we run SDMetrics. The simplest way to achieve this is by putting the class files in
the "bin" folder of the SDMetrics installation directory. SDMetrics searches this directory for class
files.

Within the "bin" directory, we have to create a structure of subfolders that reflects the packages of
the classes we provide. The class file for class com.acme.MetricProcedurePairwise
therefore will be located at the path bin/com/acme/MetricProcedurePairwise.class.

9.2 Set Procedures

Defining set procedures is very similar to defining metric procedures. In the following example, we
will implement a "conditional" set procedure that yields one of two possible sets based on a
condition. The set procedure takes three required attributes "condition", "set", and "alt". If the
"condition" expression evaluates to true, the set procedure returns the result of the "set" expression,
otherwise the value of the "alt" expression.

 packacke com.acme;
 import java.util.Collection;
 import com.sdmetrics.math.ExpressionNode;
 import com.sdmetrics.metrics.*;
 import com.sdmetrics.model.ModelElement;

01 public class SetProcedureCondition extends SetProcedure {

 @Override
02 public Collection<?> calculate(ModelElement element, Set set)
 throws SDMetricsException {

03 ProcedureAttributes attributes = set.getAttributes();
04 ExpressionNode condexp = attributes.getRequiredExpression("condition");
05 ExpressionNode setExpr = attributes.getRequiredExpression("set");
06 ExpressionNode altExpr = attributes.getRequiredExpression("alt");

07 Variables vars = new Variables(element);
08 boolean condition = evalBooleanExpression(element, condexp, vars);
09 if (condition)
 return evalSetExpression(element, setExpr, vars);

10 return evalSetExpression(element, altExpr, vars);
 }
}

Some of the metrics engine API used here we already know from (Section 9.1.2 "Implementation of
the Metric Procedure"), so we focus the discussion of this implementation on new features:

• 01: The class must have public visibility, a standard constructor, and extend the abstract
class com.sdmetrics.metrics.SetProcedure.

• 02: The base class defines one method calculate. Input parameters are the model
element and the definition of the set to be calculated (an instance of class
com.sdmetrics.metrics.Set).

• 04-06: Method getRequiredExpressionNode returns the expression of the indicated
attribute, or throws an SDMetricsException if the attribute was not defined. The
message text of the exception is suitable to be read and understood by end users.

© 2002-2021. All rights reserved. 131

SDMetrics ® User Manual 9.2 Set Procedures

• 09-10: Method evalSetExpression evaluates set expressions for model elements, and
returns a java.util.Collection with the set elements.

The return value of a set procedure can be a regular set (instance of java.util.HashSet), or a
multiset (instance of com.sdmetrics.math.HashMultiSet). An "element set" (see
Section 8.2 "Definition of Sets") will contain only instances of ModelElement. A "value set" will
contain instances of java.lang.Number (Integer or Float), or strings. This set procedure
can return either value sets or element sets, depending on the types of sets specified via the "set"
and "alt" attributes.

For further examples on how to programmatically manipulate regular and multisets, see Section 9.6
"Set Functions".

To use our new set procedure, we register it with the metrics engine as follows:

<setprocedure name="conditionalset"
 class="com.acme.SetProcedureCondition" />

Again, we deploy the class file of the procedure class in the "bin" folder of our SDMetrics
installation (path com/acme/SetProcedureCondition.class). After that, we can write
set definitions using the new set procedure. For example:

<set name="InterestingObjects" domain="class">
<conditionalset condition="'DataStore' in StereoTypeNames" set="AttributeSet"
 alt="OperationSet" />
</set>

Note: every set procedure can also be used to define relation matrices (cf. Section 8.4 "Definition of
Relation Matrices"). This includes custom set procedures you defined yourself.

9.3 Rule Procedures

To illustrate the definition of custom rule procedures, consider the following scenario. We wish to
implement a rule that checks adherence to a particular naming convention. The naming convention
states that the names of certain elements (such as actions) must be constructed according to the
pattern "<verb> <object>", for example "create account" or "update customer". Both verbs and
objects must be chosen from a predefined list (maybe "create, read, update, delete, validate" for
verbs, and "account, customer, credit, debit" for objects). The rule should check that the name of
each action adheres to this pattern and uses only verbs and objects from the approved list.

To define the contents of the approved list of verbs and objects, we will use word lists (see
Section 8.3.5 "Word lists"). The definition of the rule including the word lists could look something
like this:

<wordlist name="VerbList">
 <entry word="create"/>
 <entry word="read"/>
 <entry word="update"/>
 <entry word="delete"/>
</wordlist>

© 2002-2021. All rights reserved. 132

SDMetrics ® User Manual 9.3 Rule Procedures

<wordlist name="ObjectList">
 <entry word="bank account"/>
 <entry word="customer"/>
 <entry word="credit"/>
</wordlist>

<rule name="ActionNames" domain="action">
 <description>Checks that action names contain only approved
 verbs and objects.</description>
 <verbobject
 term="name"
 condition="!(_verb onlist VerbList) or !(_object onlist ObjectList)"
 value="'Illegal name: '+name" />
</rule>

Attribute term is a metric expression that yields the string to be checked. The attribute can be
optional, when omitted, the procedure will check the name of the model element.

The procedure then has to extract the verb and object part from the result of the term expression,
and pass the values as variables _verb and _object to the condition expression. If the
expression evaluates to true, the procedure reports a violation, the value of the violation, as usual,
given by the value expression.

Here is a possible implementation of such a rule procedure:

import com.sdmetrics.math.ExpressionNode;
import com.sdmetrics.metrics.*;
import com.sdmetrics.model.ModelElement;

© 2002-2021. All rights reserved. 133

SDMetrics ® User Manual 9.3 Rule Procedures

01 public class RuleProcedureVerbObject extends RuleProcedure {

 @Override
02 public void checkRule(ModelElement element, Rule rule) throws
SDMetricsException {

03 String name = element.getName();

04 ProcedureAttributes attributes = rule.getAttributes();
05 ExpressionNode term = attributes.getExpression("term");
06 Variables vars = new Variables(element);
07 if (term != null)
08 name = evalExpression(element, term, vars).toString();

09 int boundary = name.indexOf(' ');
10 if (boundary < 0) {
11 reportViolation(element, rule, "Element does not specify an object.");
12 return;
 }

13 String verb = name.substring(0, boundary);
14 String object = name.substring(boundary + 1);
15 vars.setVariable("_verb", verb);
16 vars.setVariable("_object", object);

17 ExpressionNode condition = attributes.getRequiredExpression("condition");
18 if (evalBooleanExpression(element, condition, vars)) {
19 Object value = getRuleValue(element, attributes, vars);
20 reportViolation(element, rule, value);
 }
 }
}

The example illustrates a number of new features of the metrics and rule engine API:

• 01: All rule procedure classes must have public visibility, a default or no-argument
constructor, and extend the abstract class
com.sdmetrics.metrics.RuleProcedure.

• 02: The base class defines the abstract method checkRule which we must override. Input
parameters are the model element and the rule to check.

• 08: Here we evaluate the "term" expression, if defined. Method evalExpression
evaluates a metric expression for a model element and returns its value. Metric expressions
usually produce numbers (Float or Integer), strings, or model elements. In our example, the
"term" expression should return a string.

• 11: We use method reportViolation when we detect the violation of a rule. We report
the violated element, the violated rule, and a value describing the nature of the violation.

• 13-16: Here we extract the "verb" part and the "object" part of the term, and store them as
variables "_verb" and "_object" for the evaluation of the condition expression in line 18.

• 19: Method getRuleValue evaluates the attribute "value" of the rule definition. We use
this value to report the rule violation in the following statement.

To register the rule procedure with the rule engine, we deploy the class file of the procedure class in
the "bin" folder of our SDMetrics installation (path
com/acme/RuleProcedureVerbObject.class), and add the following definition to our
metric definition file:

<ruleprocedure name="verbobject"
 class="com.acme.RuleProcedureVerbObject" />

© 2002-2021. All rights reserved. 134

SDMetrics ® User Manual 9.3 Rule Procedures

After that, we can define rules using our new rule procedure, such as rule "ActionNames" from
above.

9.4 Boolean Functions

9.4.1 Conception of a New Boolean Function

Boolean functions occur in condition expressions (see Section 8.5 "Expression Terms") and yield
Boolean (yes/no) values as results of conditions.

For example, let's assume we have a modeling process that defines a stereotype 'foobar' for classes.
Classes of this stereotype must either contain operations, or contain attributes, or specialize some
other class. We wish to define a rule that checks this constraint for 'foobar' classes.

Checking each condition individually is simple. We can use SDMetrics' standard class metrics
NumOps, NumAttr, and DIT (depth of inheritance tree), and compare their values to 0. However,
the condition expressions to assert that exactly one of the conditions holds is cumbersome:

 (NumOps!=0 and NumAttr=0 and DIT=0) or
 (NumOps=0 and NumAttr!=0 and DIT=0) or
 (NumOps=0 and NumAttr=0 and DIT!=0)

The length of the condition expressions grows with the square of the number of individual
conditions to check. The efficiency of evaluating this condition expressions is suboptimal, as each
individual condition may be evaluated several times.

A Boolean function that calculates the "exclusive or" (XOR) for any number of conditions would be
convenient in this situation. The condition expression could then be boiled down to

 xor(NumOps!=0, NumAttr!=0, DIT!=0)

With this new XOR function, we could define our rule as follows:

<rule name="FooBarCondition" domain="class">
<description>Classes with stereotype foobar must either define operations,
 attributes, or specialize another class.</description>
<violation condition=
 "('foobar' in StereotypeNames) and !xor(NumOps!=0, NumAttr!=0, DIT!=0)" />
</rule>

The condition term of the rule first checks if the class is of stereotype 'foobar' (we assume value set
StereotypeNames was defined elsewhere to contain the names of the stereotypes of the class).
If the stereotype condition holds, and the XOR function returns false, the condition term is true
and the rule violation will be reported.

© 2002-2021. All rights reserved. 135

SDMetrics ® User Manual 9.4 Boolean Functions

9.4.2 Implementation of the Boolean Function

The following listing shows the complete implementation of the XOR function outlined in the
previous section. The function successively evaluates the condition expressions passed as
arguments to the XOR function. The result of the function is true if exactly one of the individual
condition expressions is true:

 package com.acme;

 import com.sdmetrics.math.ExpressionNode;
 import com.sdmetrics.metrics.BooleanOperation;
 import com.sdmetrics.metrics.SDMetricsException;
 import com.sdmetrics.metrics.Variables;
 import com.sdmetrics.model.ModelElement;

01 public class BooleanOperationXOR extends BooleanOperation {

 @Override
02 public boolean calculateValue(ModelElement element,
03 ExpressionNode node,
04 Variables vars)
05 throws SDMetricsException {

06 int trueConditions = 0;
07 int index = 0;
08 while (index < node.getOperandCount() && trueConditions <= 1) {
09 if (evalBooleanExpression(element, node.getOperand(index), vars)) {
10 trueConditions++;
 }
11 index++;
 }
12 return trueConditions == 1;
 }
}

Let's go through the salient points of this implementation line by line:

• 01: Boolean function classes must have public visibility, a default or no-argument
constructor, and extend the abstract class
com.sdmetrics.metrics.BooleanOperation.

• 02: The base class defines the abstract method calculateValue which we must
override. Parameter element is the model element for which to evaluate the function.

• 03: Parameter node contains the operator tree for the function call. The operands of the
node represent the arguments passed into the function.

• 04: Parameter vars contains the values of the variables defined for the evaluation of the
arguments to the function.

• 08: The XOR function in this example has an arbitrary number of arguments. Method
getOperandCount() obtains the actual number of arguments passed to the function.
Other functions may have a fixed number of arguments, in which case we would not need to
determine the argument count.

• 09: We use method evalBooleanExpression provided by the base class to evaluate
the condition expressions that are passed as arguments to the XOR function, one by one.
Method node.getOperand(index) accesses the arguments to the XOR function by
their index. The first argument has index 0, the second argument has index 1, and so on.

• 12: Boolean functions must return a value of type boolean.

© 2002-2021. All rights reserved. 136

SDMetrics ® User Manual 9.4 Boolean Functions

9.4.3 Using the New Boolean Function

To use our new Boolean function, we must register it with the metrics engine. We add the following
XML element to our metric definition file:

<booleanoperationdefinition name="xor"
 class="com.acme.BooleanOperationXOR" />

Attribute name defines the name of the function to be used in condition expressions, attribute
class defines the fully qualified name of the Boolean function class.

At runtime, the Boolean function class must be included in the class path of SDMetrics. The
simplest way to achieve this is by putting the class files in the "bin" folder of the SDMetrics
installation directory. SDMetrics searches this directory for class files.

Within the "bin" directory, we have to create a structure of subfolders that reflects the packages of
the classes we provide. The class file for class com.acme.BooleanOperationXOR therefore
will be located at the path bin/com/acme/BooleanOperationXOR.class.

9.5 Scalar Functions

A scalar function is used in metric expressions (see Section 8.5 "Expression Terms") and yields a
numerical value, a string value, or a model element. In the following example, we will implement a
function that yields the maximum value from a list of numerical values, e.g., in a metric expression
like this:

 max(NumClasses, NumInterfaces, NumUseCases)

The following implementation of the MAX function calculates the value of each argument provided
to the function, and returns the maximum value:

 packacke com.acme;
 import com.sdmetrics.math.ExpressionNode;
 import com.sdmetrics.metrics.MetricTools;
 import com.sdmetrics.metrics.SDMetricsException;
 import com.sdmetrics.metrics.ScalarOperation;
 import com.sdmetrics.metrics.Variables;
 import com.sdmetrics.model.ModelElement;

© 2002-2021. All rights reserved. 137

SDMetrics ® User Manual 9.5 Scalar Functions

01 public class ScalarOperationMax extends ScalarOperation {

 @Override
02 public Number calculateValue(ModelElement element, ExpressionNode node,
 Variables vars) throws SDMetricsException {

03 float result = Float.NEGATIVE_INFINITY;
04 for (int index = 0; index < node.getOperandCount(); index++) {
05 float value = ((Number) evalExpression(element,
 node.getOperand(index), vars)).floatValue();
06 result = Math.max(result, value);
 }
07 return MetricTools.getNumber(result);
 }
}

Again, we discuss the implementation line by line:

• 01: The class must have public visibility, a standard constructor, and extend the abstract
class com.sdmetrics.metrics.ScalarOperation.

• 02: Like Boolean functions (Section 9.4.2 "Implementation of the Boolean Function"), the
base class defines an abstract method calculateValue, with identical input parameters.
The return value of the method is of type Object, and provides the value of the scalar
function. Since our MAX function deals with numerical values, we have narrowed the return
type to Number. Other acceptable return types are Integer, Float, String, or
ModelElement.

• 05: Method evalExpression evaluates metric expressions. We use it to calculate the
values of the arguments passed into the MAX function, one by one. Method
evalExpression returns instances of Object. Since we expect the arguments to our
MAX function to be numerical, we cast the result to Number and take its float value.

• 07: Static method MetricTools.getNumber(float) wraps the given float value into
an Integer if it is small enough and has no fractional part, or else into a Float.

To use the scalar function, we register it with the metrics engine as follows:

<scalaroperationdefinition name="max"
 class="com.acme.ScalarOperationMax" />

As with Boolean functions, we deploy the class file of the class in the "bin" folder of our SDMetrics
installation (path com/acme/ScalarOperationMax.class). After that, we can write metric
expressions using the new function. For example:

<metric name="DominantElementTypeSize" domain="package">
<description>Size of the package in terms of the number elements
 of the most dominant type in the package.</description>
<compoundmetric
 term="max(NumClasses, NumInterfaces, NumDataTypes, NumUseCases)" />
</metric>

© 2002-2021. All rights reserved. 138

SDMetrics ® User Manual 9.6 Set Functions

9.6 Set Functions

A set function is used in set expressions (see Section 8.5 "Expression Terms") and yields an element
set or a value set. To illustrate the implementation of set functions, we'll define one to calculate the
symmetric difference of two sets.

The symmetric difference of two sets A and B is the set of elements contained in either A or B, but
not both. For regular sets, we could express the symmetric difference in terms of the existing set
operations as (A+B)-(A*B) (i.e., the union of the sets without the intersection of the sets, see
Section 8.5.3 "Set Expressions"). For multisets, however, we must take the cardinality of elements
into account: the cardinality of an element in the symmetric difference is the absolute difference of
the cardinality of the element in sets A and B. For example, if the cardinality of element e is five in
set A and three in set B, the cardinality of element e in the symmetric difference is two. The formula
(A+B)-(A*B) would yield cardinality (5+3)-3=5 for element e and therefore cannot be used for
multisets.

The following implementation handles both regular and multisets.

 packacke com.acme;
 import java.util.Collection;
 import java.util.Iterator;

 import com.sdmetrics.math.ExpressionNode;
 import com.sdmetrics.metrics.MetricTools;
 import com.sdmetrics.metrics.SDMetricsException;
 import com.sdmetrics.metrics.SetOperation;
 import com.sdmetrics.metrics.Variables;
 import com.sdmetrics.model.ModelElement;

01 public class SetOperationSymmDiff extends SetOperation {

 @Override
02 public Collection<?> calculateValue(ModelElement element,
 ExpressionNode node, Variables vars) throws SDMetricsException {

03 Collection<?> left = evalSetExpression(element, node.getOperand(0),
 vars);
04 Collection<?> right = evalSetExpression(element, node.getOperand(1),
 vars);

05 boolean isMultiSet = MetricTools.isMultiSet(right)
 || MetricTools.isMultiSet(left);
06 Collection<?> result = MetricTools.createHashSet(isMultiSet);

 // process elements from the first set
07 Iterator<?> it = MetricTools.getFlatIterator(left);
08 while (it.hasNext()) {
09 processElement(it.next(), result, left, right);
 }

© 2002-2021. All rights reserved. 139

SDMetrics ® User Manual 9.6 Set Functions

 // process additional elements from the second set
10 it = MetricTools.getFlatIterator(right);
11 while (it.hasNext()) {
12 Object o = it.next();
13 if (!left.contains(o)) {
14 processElement(o, result, left, right);
 }
 }
15 return result;
 }

 @SuppressWarnings({ "unchecked", "rawtypes" })
16 private void processElement(Object o, Collection col,
 Collection<?> left, Collection<?> right) {
17 int leftCount = MetricTools.elementCount(left, o);
18 int rightCount = MetricTools.elementCount(right, o);
19 int count = Math.abs(leftCount - rightCount);
20 for (int i = 0; i < count; i++)
21 col.add(o);
 }
}

Once more, we discuss the salient features of this implementation, line by line.

• 01: The class must have public visibility, a standard constructor, and extend the abstract
class com.sdmetrics.metrics.SetOperation.

• 02: Like Boolean and scalar functions (cf. Section 9.4.2 "Implementation of the Boolean
Function"), the base class defines an abstract method calculateValue, with identical
input parameters. The return value of the method is of type java.util.Collection
and provides the result set of the function. Regular sets must be represented by instances of
java.util.HashSet, multiset must be instances of
com.sdmetrics.math.HashMultiSet. An "element set" (see Section 8.2
"Definition of Sets") contains instances of ModelElement. A "value set" contains
instances of java.lang.Number (Integer or Float), or strings.

• 03-04: Method evalSetExpression evaluates set expressions. We use it to calculate the
two input sets passed as arguments into the function.

• 05: Class MetricTools contains a number of static methods that are useful when dealing
with sets that may be either regular or multisets. Method isMultiSet checks if a set is a
multiset or a regular set.

• 06: Method MetricTools.createHashSet(boolean) creates a new, empty regular
set or multiset. The Boolean parameter determines the type of set created. In our example,
we create a multiset if at least one of the input sets is a multiset.

• 07: Method MetricTools.getFlatIterator(Collection) obtains an iterator
over the elements in a set that returns each element in the set exactly once, even if the set is a
multiset and the cardinality of the element is greater than one.

• 17: Method MetricTools.elementCount(Collection, Object) determines
the cardinality of an element in a set. For regular sets, the method returns 1 if the element is
contained in the set, else 0.

• 20-21: The element is added to the result set, multiple times if necessary to get the
cardinality of the element right. This implementation does not check the types of the
elements added to the result set. That way, the types of the elements in the input sets
determines if the result set is an element set or a value set.

To use the set function, we register it with the metrics engine as follows:

© 2002-2021. All rights reserved. 140

SDMetrics ® User Manual 9.6 Set Functions

<setoperationdefinition name="symmdiff"
 class="com.acme.SetOperationSymmDiff" />

Again, we deploy the class file of the class in the "bin" folder of our SDMetrics installation (path
com/acme/SetOperationSymmDiff.class). After that, we can write set expressions using
the new function. For example:

<metric name="FooBar" domain="package">
<compoundmetric term="size(symmdiff(FooBarClassesSet, FooBazClassesSet))" />
</metric>

9.7 Metrics Engine Extension Guidelines

Before you embark on creating new custom procedures and functions, consider the following
guidelines.

General guidelines

• The procedure and function classes must have public visibility, and they must have a public
constructor without arguments (usually the default constructor).

• The classes must be stateless. Do not define or use instance fields in these classes. The
method implementations must be reentrant.

• Avoid side effects in the method implementations. For instance, do not modify the
intermediate sets obtained from calls to method evalSetExpression, as these sets may
be cached by the metrics engine and used elsewhere.

Guidelines for metric, set, and rule procedures

• Defining new procedures should rarely be necessary. The primary means of defining new
metrics and rules is the SDMetricsML, which is faster to do and only requires a text editor
for tool support. Only when the capabilities of the SDMetricsML are absolutely insufficient
should you consider defining new procedures.

• A metric, set, or rule procedure does not define a concrete metric, set, or rule. It rather
provides a template and algorithm for the definition of a whole family of different
metrics/sets/rules. Think of the many different metrics you can define with just the
"projection" procedure. Therefore, aim to define the attributes of your procedures to provide
as much flexibility as possible. Make sure that all inputs to the procedure can be specified as
procedure attributes, and only hardcode default values for optional attributes in the
implementation of the procedure.

• When you define the attributes for your new procedure, use established groups of attributes
such as the standard filter attributes supported by class FilterAttributeProcessor,
or the "sum/stat" attributes of class SummationHelper. Your new procedures will better
blend in and form a cohesive whole with the standard procedures, and the implementation of
your procedure will be easier.

© 2002-2021. All rights reserved. 141

SDMetrics ® User Manual 9.7 Metrics Engine Extension Guidelines

Guidelines for boolean, scalar, and set functions

• As with procedures, defining new functions should rarely be necessary.
• The return type of the function determines where the function can be used:

• Boolean functions return Boolean values and are used in condition expressions.
• Scalar functions return numbers, strings, or a model elements and are used in metric

expressions
• Set functions return sets (regular or multisets, element or value sets) and are used in

set expressions.
• The types of the arguments to the function are independent from the return type of the

function. Each function type can have condition expressions, metric expressions, and/or set
expressions as arguments. You can mix and match the argument types as needed. The
methods evalExpression, evalBooleanExpression, and
evalSetExpression are equally provided by all of the function base classes.

Where to go from here

The above examples of custom procedures and functions did not cover the entire metrics and rule
engine API. On the SDMetrics web site, you can

• view the JavaDocs of the complete API,
• download the SDMetrics Open Core distribution, which contains the implementations of all

the standard metric, set, and rule procedures described in Section 8 "Defining Custom
Design Metrics and Rules", and all the functions and operations described in Section 8.5
"Expression Terms". These implementations provide further usage examples for every
feature of the API.

© 2002-2021. All rights reserved. 142

SDMetrics ® User Manual A: Metamodels

A: Metamodels
SDMetrics ships with default metamodels for UML1.3/1.4 and UML2.x (see Section 7.1
"SDMetrics Metamodel"). This appendix lists all metamodel elements and a description of their
attributes.

A.1 Metamodel for UML 1.3/1.4

All metamodel elements inherit by default from a special metamodel element
"sdmetricsbase", which defines, amongst others, the attributes "id", "name", and "context"
that all model elements must possess (see Section 7.1 "SDMetrics Metamodel"). Table 6 shows
these default attributes.

Column "Attributes" provides the name of the attributes, column "Type" indicates if the attribute is
a data or cross-reference attribute, column "Mult." indicates the multiplicity of the attribute ("one"
for single-valued, "many" for multi-valued attributes).

Attribute Type Multi. Description
context ref one Owner of the element in the UML model.
id data one Unique identifier of the model element.
name data one Name of the element in UML model.
stereotypes ref many The stereotypes of the model element.
Table 6: Default attributes for the UML1.x metamodel

In Table 7, column "Model Element" lists all elements of the UML1.4 metamodel. The remaining
columns provide the details about all further attributes the metamodel elements define in addition to
the inherited attributes.

Model Element Attribute Type Multi. Description
class visibility data one Visibility of the class (public, private,

protected, package).
abstract data one Boolean indicating if class is abstract.

leaf data one Boolean indicating if a class must not
have subclasses.

interface --- --- ---
datatype --- --- ---
attribute visibility data one Visibility of the attribute (public, private,

protected, package).

attributetype ref one Reference to the attribute type (class, data
type etc).

changeability data one Changeability of the attribute (changeable
or none, frozen, addOnly).

© 2002-2021. All rights reserved. 143

SDMetrics ® User Manual A.1 Metamodel for UML 1.3/1.4

Model Element Attribute Type Multi. Description
operation

visibility data one
Visibility of the operation (public,
private, protected, package).

abstract data one
Boolean indicating if operation is
abstract.

isquery data one
Boolean indicating if operation is a query
that does not change the classifier's state.

parameter
kind data one

The kind of parameter (in, out, inout,
return).

parametertype ref one
Reference to the parameter type (class,
data type etc).

method --- --- ---
model --- --- ---
package --- --- ---
subsystem --- --- ---
association --- --- ---
associationclass --- --- ---
associationend

navigable data one
Boolean indicating if the association end
is navigable.

aggregation data one
Indicates if the association end is an
aggregation or composite.

associationendtype ref one
A link to the element attached to the
association end.

generalization genchild ref one Link to the child in the generalization.
genparent ref one Link to the parent in the generalization.

abstraction abssupplier ref one Link to the interface.

absclient ref one
Link to the element implementing the
interface

dependency depsupplier ref one Link to the supplier of the dependency.
depclient ref one Link to the client of the dependency.

usage depsupplier ref one Link to the supplier of the usage.
depclient ref one Link to the client of the usage.

object
objtype ref one

Link to the element of which this object is
an instance.

stimulus stimsender ref one Sender of the stimulus.
stimreceiver ref one Receiver of the stimulus.
stimaction ref one The action that the stimulus dispatches.

link --- --- ---
linkend

linkendtype ref one
The element that is attached to the link
end.

© 2002-2021. All rights reserved. 144

SDMetrics ® User Manual A.1 Metamodel for UML 1.3/1.4

Model Element Attribute Type Multi. Description
collaboration --- --- ---
classifierrole

classifierbase ref one
The classifier which the classifier role is a
view of.

interaction --- --- ---
message messagesender ref one The sender of the message.

messagereceiver ref one The receiver of the message.
messageaction ref one The action that the message dispatches.

statemachine --- --- ---
state entryaction ref many The entry actions of the state.

exitaction ref many The exit actions of the state.
doactivity ref many The do actions of the state.
internaltrans ref many The internal transitions of the state.

kind data one

The kind of state (simple, composite,
submachine, stub, synch, final; initial,
deepHistory, shallowHistory, join, fork,
choice or branch, junction; action,
objectflow, call, subactivity).

isconcurrent data one
Indicates if a composite state is
concurrent.

transition transsource ref one The source state of the transition.
transtarget ref one The target state of the transition.
trigger ref one The event that triggers the transition.

event
kind data one

The kind of event (signal, call, change,
time).

linkedeventelement ref one
The element (signal, operation, boolean
expression, or deadline) that raised the
event.

action
kind data one

The kind of action (send, return, create,
destroy, call, terminate, uninterpreted).

linkedactionelement ref one

Depending on the kind of action, the
operation or signal that is invoked when
the action is executed, or the classifier of
which an instance is created.

guard --- --- ---
partition contents ref many The elements contained in the swimlane.
activitygraph --- --- ---
signal --- --- ---
usecase --- --- ---
actor --- --- ---

Model Element Attribute Type Multi. Description
usecaseextend usecaseextbase ref one The use case that is extended.

© 2002-2021. All rights reserved. 145

SDMetrics ® User Manual A.1 Metamodel for UML 1.3/1.4

Model Element Attribute Type Multi. Description
usecaseextension ref one The use case that is the extension.

usecaseextensionpoint ref one
The extension point in the extended use
case.

usecaseinclude usecaseincbase ref one The including use case.
usecaseaddition ref one The included use case.

extensionpoint --- --- ---
component

deploymentlocation ref one
The node on which the component is
deployed.

componentinstance componenttype ref one The component that is instantiated.
node --- --- ---
nodeinstance nodetype ref one The node that is instantiated.
stereotype

extendedelements ref many
The set of elements that the stereotype
extends.

taggedvalue
tag data one

The tag of the tagged value (up to UML
1.3)

definition ref one
Definition of the tagged value (since
UML 1.4)

value data one The value of the tagged value.
tagdefinition tagtype data one The tag name of a tagged value's tag.
diagram

type data one
The type of diagram (class diagram,
sequence diagram, etc).

diagramelement
element ref one

The element that is shown on the
diagram.

Table 7: SDMetrics metamodel elements and attributes for UML1.x models

A.2 Metamodel for UML 2.x

As with the UML1.x metamodel, we first describe the default attributes defined by the
"sdmetricsbase" model element.

Attribute Type Multi. Description
context ref one Owner of the element in the UML model.
id data one Unique identifier of the model element.
name data one Name of the element in UML model.
comments ref many The comments for the model element.
Table 8: Default attributes for the UML2.x metamodel

Table 9 lists all elements of the UML2.x metamodel, and the attributes they define in addition to
those inherited from the parent.

© 2002-2021. All rights reserved. 146

SDMetrics ® User Manual A.2 Metamodel for UML 2.x

Model Element Attribute Type Multi. Description
class visibility data one Visibility of the element (public,

protected, package, private).

abstract data one Boolean indicating if the element is
abstract.

leaf data one Boolean indicating if the element
can have specializations.

ownedattributes ref many The attributes of the element.
ownedoperations ref many The operations of the element.

nestedclassifiers ref many The nested classifiers of the
element.

generalizations ref many The generalizations owned by the
element.

interfacerealizations ref many The interface realizations owned by
the element.

connectors ref many The connectors owned by the
element.

interface ownedattributes ref many The attributes of the interface.
ownedoperations ref many The operations of the interface.

nestedclassifiers ref many The nested classifiers of the
interface.

generalizations ref many The generalizations owned by the
interface.

datatype ownedattributes ref many The attributes of the element.
ownedoperations ref many The operations of the element.

generalizations ref many The generalizations owned by the
element.

enumeration
(extends datatype)

ownedliterals ref many The literals of the enumeration.

enumerationliteral --- --- ---
primitivetype
(extends datatype)

--- --- ---

connector ends ref many The connector ends of the
connector.

connectorend role ref one The element that is attached at this
connector end.

© 2002-2021. All rights reserved. 147

SDMetrics ® User Manual A.2 Metamodel for UML 2.x

Model Element Attribute Type Multi. Description
property visibility data one Visibility of the feature (public,

private, protected, package).

propertytype ref one Reference to the feature type (class,
data type etc).

isreadonly data one
Changeability of the feature.
Values: true, false (default if not
specified).

association ref one Reference to association if this is an
association end.

aggregation data one
The aggregation kind of the
property: shared, composite, or none
(default).

qualifiers ref many The qualifier attributes of the
property.

port
(extends property)

--- --- ---

operation visibility data one Visibility of the operation (public,
private, protected, package).

abstract data one Boolean indicating if operation is
abstract.

isquery data one
Boolean indicating if operation is a
query that does not change the
classifier's state.

ownedparameters ref many The parameters of the operation.
parameter kind data one The direction of the parameter: in

(default), out, inout, return.

parametertype ref one Reference to the parameter type
(class, data type etc).

method --- --- ---
package ownedmembers ref many The owned member elements.
model
(extends package)

--- --- ---

association memberends ref many The member ends of the association.

ownedends ref many The owned ends of the association
(not navigable association ends).

generalizations ref many The generalizations owned by the
association.

associationclass
(extends association)

--- --- ---

generalization general ref one Link to the parent in the
generalization.

interfacerealization contract ref one Link to the realized interface.

© 2002-2021. All rights reserved. 148

SDMetrics ® User Manual A.2 Metamodel for UML 2.x

Model Element Attribute Type Multi. Description
dependency

supplier ref many
Links to the supplier elements of the
relationship.

client ref many
Links to the client elements of the
relationship.

abstraction
(extends dependency) --- --- ---

realization
(extends abstraction) --- --- ---

substitution
(extends realization) --- --- ---

usage
(extends dependency) --- --- ---

collaboration
(extends class) ownedbehaviors ref many

Behavior specifications owned by
the collaboration.

interaction
(extends class) lifelines ref many

The lifelines involved in the
interaction.

messages ref many
The messages sent within the
interaction.

fragments ref many
The message occurrence
specifications and combined
fragments of the interaction.

instancespecification
classifier ref many

Links to the classifiers that this
entity is an instance of.

deployments ref many
The deployments where this
instance specification is the target.

lifeline
represents ref one

The interaction participant that this
lifeline represents.

message
receiveevent ref one

Occurrence specification for the
message reception.

sendevent ref one
Occurrence specification for the
message sending.

sort data one
The sort of communication
(synchCall, asynchCall,
asynchSignal, etc.).

occurrencespec
covered ref one

The lifeline on which this
occurrence specification appears.

kind data one
The type of this occurrence
specification (execution, message,
destruction) (since UML2.4).

event ref one
The occurring event (up to
UML2.3).

© 2002-2021. All rights reserved. 149

SDMetrics ® User Manual A.2 Metamodel for UML 2.x

Model Element Attribute Type Multi. Description
combinedfragment

operator data one
The interaction operator (alt, loop,
break, opt, par, ref, etc.)

covered ref many
The lifelines covered by this
combined fragment.

operands ref many
The interaction operands of this
combined fragment.

interactionoperand

fragments ref many

The message occurrence
specifications and combined
fragments of the interaction
operand.

actor
(extends class) --- --- ---

usecase
(extends class) includes ref many

The include relationships owned by
the use case.

extends ref many
The extend relationships owned by
the use case.

extensionpoints ref many
The extension points owned by the
use case.

extensionpoint --- --- ---
usecaseextend extendedcase ref one The use case that is extended.

usecaseextensionpoint ref one
The extension point in the extended
use case.

usecaseinclude usecaseaddition ref one The included use case.
statemachine

regions ref many
The top-level regions owned by the
state machine.

isprotocol data one
Boolean indicating if this is a
protocol state machine

connectionpoints ref many
The connection points of the state
machine.

region subvertices ref many The states contained in the region.

transitions ref many
The transitions contained in the
region.

state

kind data one

The kind of state: '' (empty), final,
initial, deepHistory, shallowHistory,
join, fork, choice, junction,
entryPoint, exitPoint, terminate.

regions ref many
The regions of the composite or
concurrent state.

entry ref many The entry activities of the state.
exit ref many The exit activities of the state.
doactivity ref many The do-activities of the state.
connectionpoints ref many The connection points of the state.

transition kind data one The kind of transition: external,
internal, or local.

© 2002-2021. All rights reserved. 150

SDMetrics ® User Manual A.2 Metamodel for UML 2.x

Model Element Attribute Type Multi. Description

isprotocol data one
Boolean indicating if this is a
protocol transition.

transsource ref one The source state of the transition.
transtarget ref one The target state of the transition.

triggers ref many
The triggers that may fire the
transition.

guard ref one The guard of the transition.

effect ref one
The activity to be performed when
the transition fires.

constraint --- --- ---
trigger event ref one The event causing the trigger.
event

kind data one
The kind of event (signal, call,
change, time, anyreceive).

linkedeventelement ref one
The element (signal, operation,
boolean expression, or deadline)
that raised the event, if any.

activity
nodes ref many

The action, control, and object
nodes of the activity.

edges ref many
The control and object flows of the
activity.

groups ref many The groups of the activity.
activitygroup edges ref many The contained edges of the group.

nodes ref many The contained nodes of the group.
groups ref many The subgroups of the group.

handlers ref many
The exception handlers of the
structured node group.

pins ref many Pins owned by the activity group.

kind data one
The kind of group: partition,
interruptible, expansion, structured,
conditional, loop, sequence.

action
kind data one

The kind of action: send, return,
create, etc (there are many).

inputs ref many The input pins of the action.
outputs ref many The output pins of the action.

handlers ref many
The exception handlers owned by
the action.

controlnode
kind data one

The kind of control node: initial,
activityfinal, flowfinal, fork, join,
merge, or decision.

Model Element Attribute Type Multi. Description
objectnode kind data one The kind of object node:

© 2002-2021. All rights reserved. 151

SDMetrics ® User Manual A.2 Metamodel for UML 2.x

Model Element Attribute Type Multi. Description
centralbuffer, datastore,
activityparameter, or expansion.

pin
kind data one

The kind of pin (input, output,
value, actioninput).

type ref one The type of the pin.
controlflow source ref one Source of the control flow.

target ref one Target of the control flow.
guard ref one Guard of the control flow.

objectflow source ref one Source of the object flow.
target ref one Target of the object flow.
guard ref one Guard of the control flow.

signal --- --- ---
exceptionhandler handlerbody ref one The node that handles the exception.

exceptioninput ref one
The input node of the handler body
that received the exception token.

reception signal ref one Signal handled by this reception.
expression --- --- ---
opaqueexpression --- --- ---
instancevalue --- --- ---
literalboolean --- --- ---
literalinteger --- --- ---
literalreal --- --- ---
literalstring --- --- ---
literalunlimitednatural --- --- ---
literalnull --- --- ---
component
(extends class) realizations ref many

The realizations owned by the
component.

members ref many
Other members owned by the
component.

node
(extends class)

nestednodes ref many The subnodes located on the node.

deployments ref many
The deployment links owned by the
node (=deployment location).

kind data one
The type of node (regular,
executionenvironment, device)

artifact
(extends class) nestedartifacts ref many

The artifacts that are defined
(nested) within the artifact.

manifestations ref many The manifestation links to the
model elements that are manifested
in the artifact.

© 2002-2021. All rights reserved. 152

SDMetrics ® User Manual A.2 Metamodel for UML 2.x

Model Element Attribute Type Multi. Description
deploymentspec
(extends artifact) --- --- ---

deployment
(extends dependency) configurations ref many

The deployment specifications that
parameterize the deployment.

manifestation
(extends abstraction) --- --- ---

stereotype --- --- ---
comment body data one The comment text.
diagram

type data one
The type of diagram (class diagram,
sequence diagram, etc).

diagramelement
element ref one

The element that is shown on the
diagram.

Table 9: SDMetrics metamodel elements and attributes for UML2.x models

© 2002-2021. All rights reserved. 153

SDMetrics ® User Manual B: List of Design Metrics

B: List of Design Metrics
This appendix provides the detailed definitions of the design metrics that ship with SDMetrics. For
space reasons, we only list the metrics for the UML2.x metamodel. The metrics for the UML1.x
metamodel are largely the same, or have equivalent counterparts, where applicable. You can browse
the list of UML1.x metrics in the measurement catalog (see Section 4.13 "The View 'Catalog'")
when analyzing UML1.x models.

B.1 Class Metrics

Metric: NumAttr Category: Size
The number of attributes in the class.

The metric counts all properties regardless of their type (data type, class or interface), visibility,
changeability (read only or not), and owner scope (class-scope, i.e. static, or instance attribute).

Not counted are inherited properties, and properties that are members of an association, i.e., that
represent navigable association ends.

• Also known as: NV (Number of Variables per class) [LK94].

Metric: NumOps Category: Size
The number of operations in a class.

Includes all operations in the class that are explicitly modeled (overriding operations, constructors,
destructors), regardless of their visibility, owner scope (class-scope, i.e., static), or whether they are
abstract or not. Inherited operations are not counted.

• Also known as: WMC (Weighted method complexity) where each operation is assigned
unity complexity [CK94].

• Also known as: NM (Number of Methods) [LK94].

Metric: NumPubOps Category: Size
The number of public operations in a class.

Same as metric NumOps, but only counts operations with public visibility. Measures the size of the
class in terms of its public interface.

• Also known as: NPM (Number of Public Methods) [LK94].

© 2002-2021. All rights reserved. 154

SDMetrics ® User Manual B.1 Class Metrics

Metric: Setters Category: Size
The number of operations with a name starting with 'set'.

Note that this metric does not always yield accurate results. For example, an operation
settleAccount will be counted as setter method.

• See also: Getters.

Metric: Getters Category: Size
The number of operations with a name starting with 'get', 'is', or 'has'.

Note that this metric does not always yield accurate results. For example, an operation
isolateNode will be counted as getter method.

• See also: Setters.

Metric: Nesting Category: not specified
The nesting level of the class (for inner classes).

Measures how deeply a class is nested within other classes. Classes not defined in the context of
another class have nesting level 0, their inner classes have nesting level 1, etc. Nesting levels
deeper than 1 are unusual; an excessive nesting structure is difficult to understand, and should be
revised.

Metric: IFImpl Category: Inheritance
The number of interfaces the class implements.

This only counts direct interface realization links from the class to the interface. For example, if a
class C implements an interface I, which extends some other interfaces, only interface I will be
counted, but not the interfaces that I extends (even though class c implements those interfaces, too).

Metric: NOC Category: Inheritance
The number of children of the class (UML Generalization).

Similar to export coupling, NOC indicates the potential influence a class has on the design. If a
class has a large number of children, it may require more testing of the methods in that class. A
large number of child classes may indicate improper abstraction of the parent class.

• Defined in [CK94].

© 2002-2021. All rights reserved. 155

SDMetrics ® User Manual B.1 Class Metrics

Metric: NumDesc Category: Inheritance
The number of descendents of the class (UML Generalization).

Counts the number of children of the class, their children, and so on.

• See also: NOC (Number of Children).
• Suggested in [LC94] and [TSM92].

Metric: NumAnc Category: Inheritance
The number of ancestors of the class.

Counts the number of parents of the class, their parents, and so on. If multiple inheritance is not
used, the metric yields the same values as DIT.

• Suggested in [LC94] and [TSM92].

Metric: DIT Category: Inheritance
The depth of the class in the inheritance hierarchy.

This is calculated as the longest path from the class to the root of the inheritance tree. The DIT for a
class that has no parents is 0.

Classes with high DIT inherit from many classes and thus are more difficult to understand. Also,
classes with high DIT may not be proper specializations of all of their ancestor classes.

• Defined in [CK94].

Metric: CLD Category: Inheritance
Class to leaf depth. The longest path from the class to a leaf node in the inheritance hierarchy
below the class.

• Defined in [TSM92].
• See also: NOC (Number of Children).

Metric: OpsInh Category: Inheritance
The number of inherited operations.

This is calculated as the sum of metric NumOps taken over all ancestor classes of the class.

• Also known as NMI [LK94].
• See also: DIT.

Metric: AttrInh Category: Inheritance

© 2002-2021. All rights reserved. 156

SDMetrics ® User Manual B.1 Class Metrics

The number of inherited attributes.

This is calculated as the sum of metric NumAttr taken over all ancestor classes of the class.

• Loosely based on AIF in [AGE95].

Metric: Dep_Out Category: Coupling (import)
The number of elements on which this class depends.

This metric counts outgoing plain UML dependencies and usage dependencies (shown as dashed
arrows in class diagrams, usage with 'use' stereotype).

Metric: Dep_In Category: Coupling (export)
The number of elements that depend on this class.

This metric counts incoming plain UML dependencies and usage dependencies (shown as dashed
arrows in class diagrams, usage with 'use' stereotype).

Metric: NumAssEl_ssc Category: Coupling
The number of associated elements in the same scope (namespace) as the class.

For instance, for a class that is defined in a package p, this counts only associations with classes,
interfaces, etc. in the same package p. Such associations are encouraged, because they do not cross
the package boundary, and contribute to the cohesion of the package.

This metric does not distinguish plain, aggregate, or composite associations, as well as incoming,
outgoing, or bidirectional associations; all such associations are counted.

Metric: NumAssEl_sb Category: Coupling
The number of associated elements in the same scope branch as the class.

For instance, for a class that is defined in a package p, this metric only counts associations with
model elements

• in p itself,
• in packages that p contains (subpackages, sub-subpackages etc. of p),
• in packages that contain p (packages of which p is a subpackage, sub-subpackage etc).

Such associations cross package boundaries, but one of the packages is nested within the other.
Therefore, a dependency between the packages is expected, anyway.

• Note: Like metric NumAssEl_ssc, direction and aggregation of the associations are ignored.

Metric: NumAssEl_nsb Category: Coupling

© 2002-2021. All rights reserved. 157

SDMetrics ® User Manual B.1 Class Metrics

The number of associated elements not in the same scope branch as the class.

For a class that is defined in a package p, this counts only associations with model elements in
packages that neither contain p nor are contained by p. These are the least desirable associations,
because they couple otherwise unrelated packages. Such associations cannot be avoided, but their
use should be minimized.

• Note: Like metric NumAssEl_ssc, direction and aggregation of the associations are ignored.

Metric: EC_Attr Category: Coupling (export)
The number of times the class is externally used as attribute type.

This is the number of attributes in other classes that have this class as their type.

• Version of: OAEC+AAEC in [BDM97].

Metric: IC_Attr Category: Coupling (import)
The number of attributes in the class having another class or interface as their type.

• Version of: OAIC+AAIC in [BDM97].
• Also known as: DAC (data abstraction coupling) [LH93].

Metric: EC_Par Category: Coupling (export)
The number of times the class is externally used as parameter type.

This is the number of parameters defined outside this class, that have this class as their type.

• Version of: OMEC+AMEC in [BDM97].

Metric: IC_Par Category: Coupling (import)
The number of parameters in the class having another class or interface as their type.

• Version of: OMIC+AMIC in [BDM97].

Metric: Connectors Category: Complexity
The number of connectors owned by the class.

© 2002-2021. All rights reserved. 158

SDMetrics ® User Manual B.1 Class Metrics

Metric: InstSpec Category: not specified
The number of instance specification where the class is a classifier.

Similar to export coupling, the more instances of the class there are, the larger the role of the class
in the system.

Metric: LLInst Category: not specified
The number of lifelines that represent a property of which this class is the type.

Similar to export coupling, the more lifelines there are of the class, the larger the role of the class in
the system.

Metric: MsgSent Category: Coupling (import)
The number of messages sent.

Counts the number of messages that instances of this class send to instances of other classes, or
unclassified instances.

• Version of OMMIC+AMMIC in [BDM97].

Metric: MsgRecv Category: Coupling (export)
The number of messages received.

Counts the number of messages that instances of this class receive from instances of other classes
or unclassified instances.

• Version of OMMEC+AMMEC in [BDM97].

Metric: MsgSelf Category: Complexity
The number of messages sent to instances of the same class.

Counts the number of messages that instances of this class send to themselves or to other instances
of the same class.

• Version of ICH in [LLW95].

Metric: Diags Category: Diagram
The number of times the class appears on a diagram.

© 2002-2021. All rights reserved. 159

SDMetrics ® User Manual B.2 Interface Metrics

B.2 Interface Metrics

Metric: NumOps Category: Size
The number of operations in the interface.

• See also: NumOps for classes.

Metric: EC_Attr Category: Coupling (export)
The number of times the interface is used as attribute type.

• See also: EC_Attr for classes.

Metric: EC_Par Category: Coupling (export)
The number of times the interface is used as parameter type.

• See also: EC_Par for classes.

Metric: IC_Par Category: Coupling (import)
The number of parameters in the interface having an interface or class as their type.

• See also: IC_Par for classes.

Metric: Assoc Category: Coupling
The number of elements the interface has an association with.

The metric counts incoming, outgoing, or bidirectional associations, aggregations and compositions
to all kinds of elements.

In practice, there should mostly be incoming associations (see AttrOnIF), so the metric has export
coupling characteristics.

Metric: NumDirClients Category: not specified
The number of elements directly implementing the interface.

This is the number of UML abstractions where this interface is the target.

• See also NumIndClients.

© 2002-2021. All rights reserved. 160

SDMetrics ® User Manual B.2 Interface Metrics

Metric: NumIndClients Category: not specified
The number of elements implementing a descendent of the interface.

An element implementing an interface is also an implementation of every ancestor of that interface.
This metrics counts how many classes, components, etc., indirectly implement the interface via a
descendent. Together with metric NumDirClients, this indicates the total number of realizations of
the interface.

Metric: NumAnc Category: Inheritance
The number of ancestors of the interface.

• See also: NumAnc for classes.

Metric: NumDesc Category: Inheritance
The number of descendents of the interface.

• See also: NumDesc for classes.

Metric: Diags Category: Diagram
The number of times the interface appears on a diagram.

B.3 Package Metrics

Metric: NumCls Category: Size
The number of classes in the package.

Counts all classes, regardless of their visibility (public, protected, private, or package), or
abstractness.

Metric: NumCls_tc Category: Size
The number of classes in the package, its subpackages, and so on.

This is the sum of metric NumCls for this package, and all its direct and indirect subpackages.

Metric: NumOpsCls Category: Size
The number of operations in the classes of the package.

This is the sum of metric NumOps, taken over all classes in this package, and more fine-grained
measure of the size of the package.

© 2002-2021. All rights reserved. 161

SDMetrics ® User Manual B.3 Package Metrics

Metric: NumInterf Category: Size
The number of interfaces in the package.

Like metric NumCls, this counts all interfaces, regardless of their visibility.

Metric: R Category: Complexity
The number of relationships between classes and interfaces in the package. There is a dependency
from class or interface C to class or interface D if

• C has an attribute of type D
• C has an operation with a parameter of type D
• C has an association, aggregation, or composition with navigability to D
• C has a UML dependency or usage dependency to D

UML dependencies are shown as dashed arrows in the diagrams (usage with stereotype
'use').

• C is a child of D
• C implements interface D

The metric counts all such dependencies between classes and interfaces in the package.
Bidirectional associations are counted twice, because C knows D and vice versa. By convention,
associations that indicate no navigability at either end are considered to be bidirectional.

• Suggested in [Mar03].

Metric: H Category: Cohesion
Relational cohesion.

This is the average number of internal relationships per class/interface, and is calculated as the ratio
of R+1 to the number of classes and interfaces in the package.

• Suggested in [Mar03].

Metric: Ca Category: Coupling (export)
Afferent coupling.

The number of elements outside this package that depend on classes or interfaces in this package.
The dependencies considered are the same ones listed with metric R.

• Suggested in [Mar03].

© 2002-2021. All rights reserved. 162

SDMetrics ® User Manual B.3 Package Metrics

Metric: Ce Category: Coupling (import)
Efferent coupling.

The number of elements outside this package that classes or interfaces in this package depend on.
The dependencies considered are the same ones listed with metric R.

• Suggested in [Mar03].

Metric: I Category: not specified
Instability or ease of change.

This is the ratio of efferent coupling (metric Ce) to total coupling (Ce+Ce). Values of metric I range
between 0 and 1.

A value close to 0 indicates a package that does not rely much on other packages, but is heavily
relied upon by other packages. Such a package should be stable, because it is hard to change:
changes to the package potentially have a large impact on the model ("ripple effects").

A value close to 1 indicates a package that mostly relies on other packages, but that itself is not
much relied upon. Such a package can be unstable, because it is easy to change: changes to the
package are not likely to have a large impact on the model.

• Suggested in [Mar03].
• See also: rule SDP1.

Metric: A Category: not specified
Abstractness (or generality) of the package.

This is the ratio of abstract classes and interfaces in the package to the total number of interfaces
and classes in the package.

Values range from 0 to 1. Zero indicates packages without interfaces or abstract classes, 1 indicates
a package consisting only interfaces and abstract classes.

• Suggested in [Mar03].

© 2002-2021. All rights reserved. 163

SDMetrics ® User Manual B.3 Package Metrics

Metric: D Category: not specified
Distance from the main sequence. Package design should aim to strike a balance between
instability and abstractness of the packages. A stable package should be abstract, so that changes to
the package are merely extensions that do not affect existing clients of the package. An unstable
package is easy to change and can therefore be concrete.

The Stable-Abstractions-Principle (SAP) says that a package should be as abstract as it is stable.
With abstractness measured by metric A, and stability measured by metric I, the SAP demands that
A+I be close to 1.

If you plot A vs. I in a graph, the "main sequence" is the theoretical optimal line where A+I=1.
Metric D is the distance of the package from the main sequence, and is calculated as (A+I-
1)*sqrt(2).

Values range from -sqrt(2) to +sqrt(2). Values close to zero indicate packages that adhere to the
SAP. A large negative value indicates a package that is concrete and stable (A and I close to 0).
Such a package can be "painful" because it is not extensible and prone to change. A large positive
value indicates a package that is abstract and unstable. Such a package is extensible but has few
dependents, and is therefore useless.

• Suggested in [Mar03].

Metric: DN Category: not specified
Normalized distance D' from the main sequence.

This is a variation of metric D that has been normalized to range between 0 and 1. It is calculated as
|A+I-1|. Values close to zero indicate packages that adhere to the SAP (see metric D).

• Suggested in [Mar03].

Metric: Nesting Category: Nesting
Nesting level of the package in the package hierarchy.

Top level packages have nesting level 0, their subpackages are at level 1, and so on.

© 2002-2021. All rights reserved. 164

SDMetrics ® User Manual B.3 Package Metrics

Metric: ConnComp Category: Cohesion
The connected components formed by the classes and interfaces of the package.

The classes and interfaces of a package, and their dependencies, form a graph. This metric counts
the number of connected components of that graph.

Ideally, all classes and interfaces of the package should be related directly or indirectly, so that
there is only one connected component. If there are two or more connected components, you may
consider moving some classes or interfaces to other packages, or splitting up the package.

• See metric R for the list of dependencies considered between the classes and interfaces.
• The graph considered is an undirected graph, directions of dependencies are ignored.
• You can view the connected components in the Graph Structures View.

Metric: Dep_Out Category: Coupling (import)
The number of UML dependencies where the package is the client.

See also Dep_Out for classes.

Metric: Dep_In Category: Coupling (export)
The number of UML dependencies where the package is the supplier.

See also Dep_In for classes.

Metric: DepPack Category: Coupling (import)
The number of packages on which classes and interfaces of this package depend.

A package P depends on a package P' if

• a class or interface in P depends on a class or interface in P' (see metric R for a description
of these dependencies).

• there is a UML dependency (dashed arrow) from P to P'.

The more packages P depends on, the more difficult it is to reuse P in a different context.

This metric is similar to metric Ce, the difference is that Ce counts the individual classes or
interfaces that are depended upon.

© 2002-2021. All rights reserved. 165

SDMetrics ® User Manual B.3 Package Metrics

Metric: MsgSent_Outside Category: Coupling (import)
The number of messages sent to instances of classes outside the package.

The metric counts, for instances of classes of this package, the messages they send to instances of
classes from other packages. That is, outgoing messages that cross the package boundary. Note that
messages to unclassified instances are not counted here.

Metric: MsgRecv_Outside Category: Coupling (export)
The number of messages received by classifier instances of classes outside the package.

The metric counts, for instances of classes of this package, the messages they receive from
instances of classes from other packages. That is, incoming messages that cross the package
boundary. Note that messages from unclassified instances are not counted here.

Metric: MsgSent_within Category: Complexity
The number of messages sent between classifier instances of classes in the package.

The metric counts, for instances of classes of this package, the number of messages they send to
themselves or other instances of classes from this package. Note that messages to unclassified
instances are not counted here.

Metric: Diags Category: Diagram
The number of times the package appears on a diagram.

B.4 Interaction Metrics

Metric: LifeLines Category: Size
The number of lifelines participating in the interaction.

Metric: Messages Category: Complexity
The number of messages sent within the interaction.

Metric: SelfMessages Category: not specified
The number of messages that objects in the interaction send to themselves.

The focus of sequence diagrams should be on object interactions. A sequence diagram with a large
number of self messages may indicate that the modeler attempted to model object internal
algorithms.

© 2002-2021. All rights reserved. 166

../../dist/web/manual/Complex.html#Glossary_Complexity
../../dist/web/manual/SizeM.html#Glossary_Size

SDMetrics ® User Manual B.4 Interaction Metrics

Metric: CombinedFragments Category: Size
The number of combined fragments in the interaction.

Metric: Operands Category: Size
The number of interaction operands of the combined fragments in the interaction.

Metric: Height Category: not specified
The maximum number of messages on any of the lifelines of interaction.

Very long and busy lifelines with lots of messages attached to them may indicate objects that have
too many responsibilities.

Metric:
CombinedFragmentNesting Category: not specified

The maximum nesting level of combined fragments in the interaction.

Excessive nesting of combined fragments makes sequence diagrams harder to read and understand.
Consider extracting such combined fragments into sequence diagrams of their own.

B.5 Usecase Metrics

Metric: NumAss Category: not specified
The number of associations the use case participates in.

Counts incoming, outgoing, and bidirectional associations.

Metric: ExtPts Category: not specified
The number of extension points of the use case.

Metric: Including Category: Coupling (import)
The number of use cases which this one includes.

Metric: Included Category: Coupling (export)
The number of use cases which include this one.

Metric: Extended Category: not specified
The number of use cases which extend this one.

© 2002-2021. All rights reserved. 167

../../dist/web/manual/SizeM.html#Glossary_Size
../../dist/web/manual/SizeM.html#Glossary_Size

SDMetrics ® User Manual B.5 Usecase Metrics

Metric: Extending Category: not specified
The number of use cases which this one extends.

Metric: Diags Category: Diagram
The number of times the use case appears on a diagram.

B.6 Statemachine Metrics

Metric: Trans Category: Complexity
The number of transitions in the state machine.

Internal transitions are not included in this count.

• Version of NT in [MGP03].

Metric: TEffects Category: Complexity
The number of transitions with an effect in the state machine.

Metric: TGuard Category: Complexity
The number of transitions with a guard in the state machine.

• Also known as NG in [MGP03].

Metric: TTrigger Category: Complexity
The number of triggers of the transitions of the state machine.

• Also known as NE in [MGP03].

© 2002-2021. All rights reserved. 168

SDMetrics ® User Manual B.6 Statemachine Metrics

Metric: States Category: Size
The number of states in the state machine.

This includes pseudo states, as well as composite and concurrent states of the statemachine, and
recursively the states they contain, at all levels of nesting. Submachine states count as "one", the
states in statemachines they reference are not included.

• Corresponds to NSS+NCS in [MGP03].

Metric: SActivity Category: Size
The number of activities defined for the states of the state machine.

This counts entry, exit, and do activities (or interactions or statemachines) defined for the states.
The states considered are those counted by metric States.

• corresponds to NEntry+NExit+NA in [MGP03].

Metric: CC Category: Complexity
The cyclomatic complexity of the state-transition graph.

This is calculated as Trans-States+2.

• Suggested in [MGP03].

B.7 Activity Metrics

Metric: Actions Category: Size
The number of actions of the activity.

Includes actions in all activity groups (partitions, interruptible regions, expansion regions,
structured activities including conditional, loop, and sequence nodes), and their subgroups, sub-
subgroups, etc.

Metric: ObjectNodes Category: Size
The number of object nodes of the activity.

Counts data store, central buffer, and activity parameter nodes in all activity groups and their
subgroups etc. (see Actions).

© 2002-2021. All rights reserved. 169

SDMetrics ® User Manual B.7 Activity Metrics

Metric: Pins Category: Size
The number of pins on nodes of the activity.

Counts all input, output, and value pins on all nodes and groups of the activity.

Metric: ControlNodes Category: Size
The number of control nodes of the activity.

Control nodes are initial, activity final, flow final, join, fork, decision, and merge nodes. The metric
also counts control nodes in all activity groups and their subgroups etc. (see Actions).

Metric: Partitions Category: Size
The number of activity partitions in the activity.

Metric: Groups Category: Size
The number of activity groups or regions of the activity.

Counts interruptible and expansion regions, structured activities, conditional, loop, and sequence
nodes, at all levels of nesting.

Metric: ControlFlows Category: Complexity
The number of control flows of the activity.

Includes contained edges in all activity groups and their subgroups etc. (see Actions)

Metric: ObjectFlows Category: Complexity
The number of object flows of the activity.

Includes contained edges in all activity groups and their subgroups etc. (see Actions)

Metric: Guards Category: Complexity
The number of guards defined on object and control flows of the activity.

Includes contained edges in all activity groups and their subgroups etc. (see Actions).

© 2002-2021. All rights reserved. 170

SDMetrics ® User Manual B.7 Activity Metrics

Metric: ExcHandlers Category: Complexity
The number of exception handlers of the activity.

Includes exception handlers for all nodes in all activity groups and their subgroups etc. (see
Actions).

B.8 Component Metrics

Metric: NumOps Category: Size
The number of operations of the component.

• See also metric NumOps for classes

Metric: NumComp Category: Size
The number of subcomponents of the component.

Counts components directly owned by this component; sub-sub-components etc. are not included
in this count.

Metric: NumPack Category: Size
The number of packages of the component.

This only counts packages directly owned by the component; any sub-packages etc. of these
packages are not included in this count.

Metric: NumCls Category: Size
The number of classes of the component.

This only counts classes directly owned by the component; nested classes, classes in packages,
subcomponents, etc. are not included in this count.

• See also metric NumCls for packages.

Metric: NumInterf Category: Size
The number of interfaces of the component.

This only counts interfaces directly owned by the component; interfaces in packages, sub-
components, etc. are not included in this count.

• See also metric NumInterf for packages.

© 2002-2021. All rights reserved. 171

SDMetrics ® User Manual B.8 Component Metrics

Metric: NumManifest Category: not specified
The number of artifacts of which this component is a manifestation.

Metric: Connectors Category: Complexity
The number of connectors owned by the component.

Metric: ProvidedIF Category: Inheritance
The number of interfaces the component provides.

A component provides an interface if there is a plain or interface realization to the interface, or if a
port of the component provides the interface.

• See also metric IFImpl for classes.

Metric: RequiredIF Category: not specified
The number of interfaces the component requires.

The component requires an interface if there is a dependency, usage dependency, or an association
to the interface, or if a port of the component requires the interface.

Metric: Dep_Out Category: Coupling (import)
The number of outgoing UML dependencies (component is the client).

See also Dep_Out for classes.

Metric: Dep_In Category: Coupling (export)
The number of incoming UML dependencies (component is the supplier).

See also Dep_In for classes.

Metric: Assoc_Out Category: Coupling (import)
The number of associated elements via outgoing associations.

Takes associations, aggregations, and compositions with navigability away from the component
into account, i.e., elements the component knows.

© 2002-2021. All rights reserved. 172

SDMetrics ® User Manual B.8 Component Metrics

Metric: Assoc_In Category: Coupling (import)
The number of associated elements via incoming associations.

Takes associations, aggregations, and compositions with navigability to the component into
account, i.e., elements that know the component.

Metric: Diags Category: Diagram
The number of times the component appears on a diagram.

B.9 Node Metrics

Metric: Type Category: not specified
The type of node (regular, execution environment, or device).

Metric: NumOps Category: Size
The number of operations of the node.

• See also metric NumOps for classes.

Metric: NumComp Category: Size
The number of components located on the node.

Counts components directly owned by this node; sub-components etc. are not included in this
count.

Metric: NumNodes Category: Size
The number of subnodes of the node.

Counts nodes directly located on this node; sub-sub-nodes etc. are not included in this count.

Metric: NumArt Category: Size
The number of artifacts deployed on the node.

This metric counts

• artifacts directly owned by this node; sub-artifacts etc. are not included,
• artifacts with a deployment dependency to the node.

© 2002-2021. All rights reserved. 173

SDMetrics ® User Manual B.9 Node Metrics

Metric: NumPack Category: Size
The number of packages of the node.

This only counts packages directly owned by the node; any sub-packages etc. of these packages are
not included in this count.

Metric: AssEl Category: Coupling
The number of elements the node is associated with.

Takes incoming, outgoing, and bidirectional communication paths, associations, aggregations, and
compositions into account.

Metric: Diags Category: Diagram
The number of times the node appears on a diagram.

B.10 Diagram Metrics

Metric: Type Category: not specified
The type of diagram (class diagram, sequence diagram, etc.).

Metric: Elements Category: Size
The total number of design elements on the diagram. See diagram metrics.

Metric: Classes Category: Size
The number of classes on the diagram. See diagram metrics.

Metric: Interfc Category: Size
The number of interfaces on the diagram. See diagram metrics.

Metric: Packages Category: Size
The number of packages on the diagram. See diagram metrics.

Metric: Assoc Category: Complexity
The number of associations on the diagram. See diagram metrics.

Metric: Genrs Category: Complexity
The number of generalizations on the diagram. See diagram metrics.

© 2002-2021. All rights reserved. 174

SDMetrics ® User Manual B.10 Diagram Metrics

Metric: Deps Category: Complexity
The number of UML dependencies and UML usage dependencies on the diagram. See diagram
metrics.

Metric: IfRealize Category: Complexity
The number of interface realizations on the diagram. See diagram metrics.

Metric: InstSpec Category: Size
The number of instance specifications on the diagram. See diagram metrics.

Metric: Lifelines Category: Size
The number of lifelines on the diagram. See diagram metrics.

Metric: Connectors Category: Complexity
The number of connectors on the diagram. See diagram metrics.

Metric: Messages Category: Complexity
The number of messages on the diagram. See diagram metrics.

Metric: Actors Category: Size
The number of actors on the diagram. See diagram metrics.

Metric: UseCase Category: Size
The number of use cases on the diagram. See diagram metrics.

Metric: ExtPts Category: Size
The number of extension points on the diagram. See diagram metrics.

Metric: Extends Category: Complexity
The number of use case extensions on the diagram. See diagram metrics.

Metric: Includes Category: Complexity
The number of use case includes on the diagram. See diagram metrics.

© 2002-2021. All rights reserved. 175

SDMetrics ® User Manual C: List of Design Rules

C: List of Design Rules
This appendix provides the detailed definitions of the design rules that ship with SDMetrics. For
space reasons, we only list the rules for the UML2.x metamodel. The rules for the UML1.x
metamodel are largely the same, or have equivalent counterparts, where applicable. You can browse
the list of UML1.x rules in the measurement catalog (see Section 4.13 "The View 'Catalog'") when
analyzing UML1.x models.

C.1 Class Rules

Rule: Unnamed Category: Completeness
Severity: 1-high Applies to: all areas
Class has no name.

Give the class a descriptive name that reflects its purpose. Unnamed classes will cause problems
during code generation.

• Suggested in [RVR04].

Rule: Unused Category: Completeness
Severity: 1-high Applies to: all areas
The class is not used anywhere.

The class has no child classes, dependencies, or associations, and it is not used as parameter or
property type. You'll probably still need to model the clients of the class, or else consider deleting
the class from the model.

Note: for models that were reverse-engineered from source code, this rule may falsely report many
classes as "unused". This happens for classes that are only referenced in method implementations,
e.g., via local variables.

• Suggested in [Rie96] (heuristic #3.7 eliminate irrelevant classes).

Rule: NotCapitalized Category: Naming
Severity: 3-low Applies to: all areas
Class names should start with a capital letter.

This naming convention is a recommended style guideline in the UML standards [OMG03],
[OMG05].

© 2002-2021. All rights reserved. 176

SDMetrics ® User Manual C.1 Class Rules

Rule: GodClass Category: Style
Severity: 2-med Applies to: all areas
The class has more than 60 attributes and operations.

Also known as blob classes, large classes are likely maintenance bottlenecks, sources of
unreliability, and indicate a lack of (object-oriented) architecture and architecture enforcement.

Consider refactoring the class to split it up into smaller classes.

• Threshold of 60 cited in [BMM98].
• See also metrics NumOps and NumAttr
• Also known as "Large Class" code smell [Fow99].
• Value reported: number of operations and attributes.

Rule: Keyword Category: Naming
Severity: 2-med Applies to: design
Class name is a Java or C++ keyword. Using programming language keywords for class names will
cause problems during code generation. Find another name for the class. Capitalizing the name will
also help, see rule NotCapitalized.

• Suggested in [RVR04].

Rule: MultipleInheritance Category: Style
Severity: 3-low Applies to: all areas
Use of multiple inheritance - class has more than one parent.

The use of multiple inheritance is controversial. Some OO programming languages do not support
multiple inheritance. Review the class design to confirm that the use of multiple inheritance is
justified.

• Suggested in [Rie96].

Rule: SpecLeafClass Category: Correctness
Severity: 1-high Applies to: all areas
Class is marked as leaf, but it has child classes.

Leaf classes cannot have any child classes. This is a WFR of the UML.

© 2002-2021. All rights reserved. 177

SDMetrics ® User Manual C.1 Class Rules

Rule: NoSpec Category: Completeness
Severity: 2-med Applies to: all areas
Abstract class has no child classes.

Abstract classes cannot be instantiated. Without specializations that can be instantiated, the abstract
class is useless.

• Suggested in [Rie96].
• Violations of this rule would be justified if the class is part of a framework or library, and is

meant to be extended by users of the framework/library.

Rule: CyclicInheritance Category: Inheritance
Severity: 1-high Applies to: all areas
Class inherits from itself directly or indirectly.

The inheritance graph must be a tree, no cycles are allowed.

• This is a WFR of the UML.
• You can view the inheritance graph in the graph structures dialog.
• Value returned: number of classes in the cycle.

Rule: ConcreteSuper Category: Style
Severity: 1-high Applies to: all areas
The abstract class has a parent class that is not abstract.

This is bad design. A child class should be substitutable for the parent class. Since the parent class
can be instantiated, but not the child class, substitution is not possible anymore.

• Suggested in [Lan03].
• Value returned: name of the concrete parent class.

Rule: DupOps Category: Correctness
Severity: 1-high Applies to: all areas
Class has duplicate operations.

There are two or more operations with identical signatures (i.e., operation name and list of
parameter types). Operation signatures must be unique within the class.

• This is a WFR of the UML.
• Value reported: name of the duplicate operation.

© 2002-2021. All rights reserved. 178

SDMetrics ® User Manual C.1 Class Rules

Rule: DupAttrNames Category: Correctness
Severity: 1-high Applies to: all areas
The class has two or more properties with identical names.

Attribute names must be unique within the class.

• This is a WFR of the UML.
• Value reported: name of the duplicate attribute.

Rule: AttrNameOvr Category: Naming
Severity: 2-med Applies to: all areas
The class defines a property of the same name as an inherited attribute.

During code generation, this may inadvertently hide the attribute of the parent class. Consider
changing the name of the attribute in the child class.

• Suggested in [RVR04].

Rule: DescendentRef Category: Style
Severity: 1-high Applies to: all areas
The class references a descendent class via associations, UML dependencies, attribute or parameter
types.

This is poor design. A class c should be oblivious of its descendent classes. The reference to the
descendent class and the inheritance links back to class c effectively form a dependency cycle
between these classes.

Redesign this to eliminate the need for the reference to the descendent class.

• Suggested in [RVR04], [Rie96].
• Value reported: name of the referenced descendent class.

© 2002-2021. All rights reserved. 179

SDMetrics ® User Manual C.1 Class Rules

Rule: DepCycle Category: Style
Severity: 2-med Applies to: all areas
The class has circular references.

Circular dependencies should be avoided. The classes participating in the cycle cannot be tested
and reused independently. The more classes participate in the cycle, the worse the problem is,
especially if the classes reside in different packages (see also rule DepCycle for packages).

Consider revising the design to eliminate the cycle.

• See also: Dependency Inversion Principle [Mar03].
• You can view the class dependency graph and its cycles in the Graph Structures View.
• Value reported: number of classes in the cycle.

C.2 Interface Rules

Rule: Unnamed Category: Completeness
Severity: 1-high Applies to: all areas
Interface has no name.

• See rule Unnamed for classes.

Rule: Unused Category: Completeness
Severity: 1-high Applies to: all areas
The interface is not used anywhere.

The interface is not implemented anywhere, has no associations, and is not used as parameter or
attribute type.

• See also rule Unused for classes.

Rule: NotCapitalized Category: Naming
Severity: 3-low Applies to: all areas
Interface names should start with a capital letter.

• See rule NotCapitalized for classes.

© 2002-2021. All rights reserved. 180

SDMetrics ® User Manual C.2 Interface Rules

Rule: Keyword Category: Naming
Severity: 2-med Applies to: design
Interface name is a Java or C++ keyword; find another name for it.

• See rule Keyword for classes.

Rule: PubOpsOnly Category: Correctness
Severity: 1-high Applies to: all areas
The interface has operations that are not public.

All operations in interfaces must have public visibility.

• This is a WFR of the UML.
• Value returned: number of non-public operations.

Rule: PubAttrOnly Category: Correctness
Severity: 1-high Applies to: all areas
The interface has attributes that are not public.

All attributes in interfaces must have public visibility.

• This is a WFR of the UML2.
• Value returned: number of non-public attributes.

Rule: AttrOnIF Category: Style
Severity: 3-low Applies to: all areas
The interface has attributes or outgoing associations.

Interfaces can have attributes and outgoing associations since UML2.0. This rather appears to be a
concession to certain component technologies, and should otherwise be avoided.

• Suggested in [Oes04].
• Value returned: number of attributes of the interface.

C.3 Datatype Rules

Rule: Unnamed Category: Completeness
Severity: 1-high Applies to: all areas
The data type has no name.

• See rule Unnamed for classes.

© 2002-2021. All rights reserved. 181

SDMetrics ® User Manual C.3 Datatype Rules

Rule: Keyword Category: Naming
Severity: 2-med Applies to: design
Data type name is a Java or C++ keyword; find another name for it.

• See rule Keyword for classes.

Rule: NoQuery Category: Correctness
Severity: 1-high Applies to: all areas
The data type has an operation that is not marked as a query.

All operations of a data type must be queries.

• This is a WFR of the UML.
• Value returned: name of the operation that should be a query.

C.4 Property Rules

Rule: Unnamed Category: Completeness
Severity: 1-high Applies to: all areas
The attribute has no name.

• See rule Unnamed for classes.

Rule: Capitalized Category: Naming
Severity: 3-low Applies to: all areas
Attribute names should start with a lowercase letter.

This is a recommended style guideline in the UML standards [OMG03], [OMG05].

• It is common practice in many programming languages to capitalize constant identifiers,
including attributes. Therefore, the rule does not report read-only attributes that start with an
uppercase letter.

Rule: Keyword Category: Naming
Severity: 2-med Applies to: design
Attribute name is a Java or C++ keyword.

• See rule Keyword for operations.

© 2002-2021. All rights reserved. 182

SDMetrics ® User Manual C.4 Property Rules

Rule: PublicAttr Category: Style
Severity: 2-med Applies to: all areas
Non-constant attribute is public.

External read/write access to attributes violates the information hiding principle. Allowing external
entities to directly modify the state of an object is dangerous. State changes should only occur
through the protocol defined by the interfaces of the object. Make the attribute private or protected.

• Suggested in [Rie96].

Rule: NoType Category: Completeness
Severity: 2-med Applies to: design
The attribute has no specified type.

Without a type, the attribute has no meaning in design, and code generation will not work. Specify
a type for the attribute.

• Suggested in [Fra03].

C.5 Operation Rules

Rule: Unnamed Category: Completeness
Severity: 1-high Applies to: all areas
Operation has no name.

• See also rule Unnamed for classes.

Rule: Capitalized Category: Naming
Severity: 3-low Applies to: all areas
Operation names should start with a lower case letter. This is a recommended style guideline in the
UML standards [OMG03], [OMG05].

In many programming languages, constructors have the same name as their class, thus starting with
upper case letters. Therefore, operations with the same name as their class are not reported.

© 2002-2021. All rights reserved. 183

SDMetrics ® User Manual C.5 Operation Rules

Rule: Keyword Category: Naming
Severity: 2-med Applies to: design
Operation name is a Java or C++ keyword.

Using programming language keywords as operation names will cause problems during code
generation. Find another name for the operation.

• Suggested in [RVR04].

Rule: AbstractOp Category: Correctness
Severity: 1-high Applies to: all areas
Operation is abstract, but its owner class is not abstract.

In many programming languages, a class is abstract if at least one of its operations is abstract.
Either make the owner class abstract, or provide an implementation for the operation.

Rule: LongParList Category: Style
Severity: 2-med Applies to: all areas
The operation has a long parameter list with five or more parameters.

Long parameter lists are difficult to use, and likely to change more frequently. Change the design to
pass one or more objects to the operation that encapsulate the required parameters. Note: the rule
only considers in, out, and inout parameters; the return parameter (if any) is not counted.

• Suggested in [Fow99].
• Value returned: the number of parameters of the operation.

Rule: MulReturn Category: Correctness
Severity: 1-high Applies to: all areas
The operation has more than one return parameter.

Many programming languages only support one return parameter per operation. Change some
return parameters to out or inout parameters, or return one object that encapsulates all return
parameters.

• This is a WFR of the UML2.
• Value returned: number of return parameters of the operation.

© 2002-2021. All rights reserved. 184

SDMetrics ® User Manual C.5 Operation Rules

Rule: DupName Category: Naming
Severity: 1-high Applies to: all areas
The operation has two or more parameters with identical names.

Parameters must have unique names to distinguish them. This is a WFR of the UML.

• Value returned: the name of the duplicate parameters.

Rule: Query Category: Style
Severity: 2-med Applies to: all areas
The operation name indicates a query, but it is not marked as a query.

The operation name suggests this is a getter (see Getters). Mark the operation as query to indicate
that it does not change the owner's state.

C.6 Parameter Rules

Rule: Unnamed Category: Completeness
Severity: 1-high Applies to: all areas
Parameter has no name.

Note that this rule does not check return parameters, as they are unnamed in most programming
languages.

• See also rule Unnamed for classes.

Rule: NoType Category: Completeness
Severity: 2-med Applies to: all areas
The parameter has no specified type.

• See also rule NoType for attributes.

Rule: Keyword Category: Naming
Severity: 2-med Applies to: design
Parameter name is a Java or C++ keyword.

Return parameters are not checked, as they are unnamed in many programming languages. Also,
some modeling tools assign the name 'return' as default name to return parameters.

• See rule Keyword for operations.

© 2002-2021. All rights reserved. 185

SDMetrics ® User Manual C.7 Package Rules

C.7 Package Rules

Rule: Unnamed Category: Completeness
Severity: 1-high Applies to: all areas
Package has no name.

• See rule Unnamed for classes.

Rule: Capitalization Category: Naming
Severity: 3-low Applies to: all areas
Package name has upper case letters. A common naming convention is that package names use all
lower case letters.

• Suggested in [RVR04].

Rule: Keyword Category: Naming
Severity: 2-med Applies to: design
Package name is a Java or C++ keyword.

• See rule Keyword for operations.

Rule: EmptyPackage Category: Completeness
Severity: 2-med Applies to: all areas
The package has no contents.

Add model elements to the package, or delete it from the design.

Rule: DupClsName Category: Naming
Severity: 1-high Applies to: all areas
The package has two or more classes or interfaces with identical names.

This will cause problems during code generation. Rename the classes or interfaces so that the
names are unique.

• Value returned: name of the duplicate class/interface.

© 2002-2021. All rights reserved. 186

SDMetrics ® User Manual C.7 Package Rules

Rule: DepCycle Category: Style
Severity: 1-high Applies to: all areas
The package has circular dependencies to other packages.

Cycles in the package dependency graph should be avoided. The packages participating in the cycle
cannot be tested, reused, or released independently. The more packages participate in the cycle, the
worse the problem is. Other design guidelines such as the Stable-Dependencies Principle (see rule
SDP1) are also invariably violated.

Revise the design to eliminate the cycle.

• See also: Dependency Inversion Principle [Mar03].
• See DepPack for what constitutes dependencies between packages.
• You can view the package dependency graph and its cycles in the Graph Structures View.
• Value returned: number of packages in the cycle.

Rule: SDP1 Category: Style
Severity: 2-med Applies to: all areas
Package violates the Stable-Dependencies Principle (SDP).

The package depends on another package, P that is less stable than itself (as measured by metric I).
Package P is less stable and therefore more liable to change than this package. A change to P may
ripple to this package. This is undesirable because this package is more stable and therefore harder
to change.

Therefore, the Stable-Dependencies Principle says that dependencies should run in the direction of
stabilities.

• Suggested in [Mar03].
• See DepPack for what constitutes dependencies between packages.
• Value returned: name of the depended package that is less stable.

Rule: SDP2 Category: Style
Severity: 2-med Applies to: all areas
Package violates the Stable-Dependencies Principle (SDP).

The package depends on another package that is less abstract than itself.

The Stable-Abstractions-Principle (SAP) says that a package should be as abstract (as measured by
metric A) as it is stable (as measured by metric I). The Stable-Dependencies Principle (SDP) says
that dependencies should run in the direction of stabilities.

Therefore, dependencies should run in the direction of abstraction: a package should be more
abstract than the packages it depends on.

• Suggested in [Mar03].

© 2002-2021. All rights reserved. 187

SDMetrics ® User Manual C.7 Package Rules

• See DepPack for what constitutes dependencies between packages.
• Value returned: name of the depended package that is less abstract.

C.8 Association Rules

Rule: AggEnds Category: Correctness
Severity: 1-high Applies to: all areas
The binary association has two composite or shared aggregation ends.

A binary association may have at most one shared (hollow diamond) or composite (filled diamond)
aggregation end. This is a WFR of the UML.

Rule: NaryAggEnds Category: Correctness
Severity: 1-high Applies to: all areas
The n-ary association has a composite or shared aggregation end.

Three (or more)- way associations must not indicate shared or composite aggregation.

• This is a WFR of the UML.
• Value returned: the number of shared/composite aggregation ends.

Rule: NaryNavEnds Category: Correctness
Severity: 1-high Applies to: all areas
The n-ary association indicates a navigable association end.

Three (or more)- way associations must not indicate navigability at any of the association ends.

• This is a WFR of the UML.
• Value returned: the number of navigable association ends.

Rule: LooseEnd Category: Completeness
Severity: 1-high Applies to: all areas
The association has one or more ends not connected to a model element.

Check the ends of the association, and attach the loose end(s) to the proper model element(s), or
remove the association from the model.

© 2002-2021. All rights reserved. 188

SDMetrics ® User Manual C.8 Association Rules

Rule: NaryAgg Category: Style
Severity: 3-low Applies to: design
The association has three or more association ends.

People are often confused by the semantics of n-ary associations. N-ary associations have no
representation in common programming languages. The suggestion is therefore to remodel the n-
ary association using several plain associations.

• Suggested in [Fra03] and [Oes04].

Rule: SpecAgg Category: Style
Severity: 3-low Applies to: all areas
The association is a specialization of another association.

People are often confused by the semantics of specialized associations. The suggestion is therefore
to model any restrictions on the parent association using constraints.

• Suggested in [Oes04].
• Value returned: name of the parent association.

C.9 Associationclass Rules

Rule: AssocClass Category: Style
Severity: 3-low Applies to: design
Avoid association classes.

Association classes have no representation in common programming languages. They defer the
decision which class(es) eventually will be responsible to manage the association attributes.

The recommendation is to remodel the association class to only use regular classes and binary
associations.

• Suggested in [Fra03] and [Oes04].

C.10 Generalization Rules

Rule: NoChild Category: Completeness
Severity: 1-high Applies to: all areas
The child end of the generalization is not connected to a model element.

Check the generalization and attach the child end to the proper model element, or remove the

© 2002-2021. All rights reserved. 189

SDMetrics ® User Manual C.10 Generalization Rules

generalization from the model.

Rule: NoParent Category: Completeness
Severity: 1-high Applies to: all areas
The parent end of the generalization is not connected to a model element.

Check the generalization and attach the parent end to the proper model element, or remove the
generalization from the model.

Rule: TypeMismatch Category: Correctness
Severity: 1-high Applies to: all areas
Parent and child of the generalization are not of the same type.

The child must be of the same type as the parent. This is a WFR of the UML.

• This is a WFR of the UML.
• Value returned: types of the parent and child elements.

C.11 Interfacerealization Rules

Rule: NoSupplier Category: Completeness
Severity: 1-high Applies to: all areas
The supplier end of the interface realization is not connected to an interface.

For a loose supplier end, either attach the end to the proper interface or delete the interface
realization from the model.

If the supplier end is connected to anything else but an interface, connect it to the proper interface,
or consider replacing the interface realization with a plain UML generalization, realization, or
dependency.

Rule: NoInterface Category: Completeness
Severity: 1-high Applies to: all areas
The client end of the interface realization is not connected to a model element.

Check the interface realization and attach the client end to the proper model element, or remove the
interface realization from the model.

© 2002-2021. All rights reserved. 190

SDMetrics ® User Manual C.12 Dependency Rules

C.12 Dependency Rules

Rule: NoSupplier Category: Completeness
Severity: 1-high Applies to: all areas
The supplier end of the dependency link is not connected to a model element.

Check the dependency and attach the supplier end to the proper model element, or remove the
dependency link from the model.

Rule: NoClient Category: Completeness
Severity: 1-high Applies to: all areas
The client end of the dependency link is not connected to any model element.

Check the dependency and attach the client end to the proper model element, or remove the
dependency link from the model.

C.13 Interaction Rules

Rule: Alternatives Category: Style
Severity: 3-low Applies to: all areas
The interaction models alternative sequences.

The interaction contains a combined fragment with 'alt', 'opt', or 'break' operator to model
alternative execution sequences. The purpose of a sequence diagram is to show one scenario, not a
set of different possible sequences. Activity diagrams are better suited for that purpose.

Consider using several sequence diagrams showing one scenario each, or use an activity diagram.

• Suggested in [Oes04].
• Value returned: name of the operator of the combined fragment.

C.14 Actor Rules

Rule: NoAssoc Category: Completeness
Severity: 1-high Applies to: all areas
The actor is not associated with any use cases, classes, or subsystems.

Without such associations, the actor is useless. Associate the actor with one or more use cases, or
delete it from the model.

• Suggested in [Amb03].

© 2002-2021. All rights reserved. 191

SDMetrics ® User Manual C.14 Actor Rules

Rule: NaryAssoc Category: Correctness
Severity: 2-med Applies to: all areas
The actor participates in an n-ary association.

An actor can only participate in binary associations. Replace the n-ary association with several
binary associations.

• This is a WFR of the UML.

Rule: Unnamed Category: Correctness
Severity: 1-high Applies to: all areas
The actor has no name.

• See rule Unnamed for classes.

C.15 Usecase Rules

Rule: Unused Category: Completeness
Severity: 1-high Applies to: all areas
The use case is not used.

The use case is not associated with any actors, or included in or extending other use cases. Such a
use case is useless. Associate it with an actor, attach it to another use case, or delete it from the
model.

• Suggested in [Amb03].

Rule: DupExPoint Category: Correctness
Severity: 1-high Applies to: all areas
The use case has two or more extension points of the same name.

Rename the extension points so that they all have unique names.

• This is a WFR of the UML.
• Value returned: the name of the duplicate extension points.

© 2002-2021. All rights reserved. 192

SDMetrics ® User Manual C.15 Usecase Rules

Rule: NoName Category: Completeness
Severity: 1-high Applies to: all areas
The use case has an extension point without a name.

Check the extension points of the use case and make sure they all have a name.

• This is a WFR of the UML.

Rule: NaryAssoc Category: Correctness
Severity: 2-med Applies to: all areas
The use case participates in an n-ary association.

A use case can only participate in binary associations. Replace the n-ary association with several
binary associations.

• This is a WFR of the UML.

Rule: Unnamed Category: Correctness
Severity: 1-high Applies to: all areas
The use case has no name.

• See rule Unnamed for classes.

Rule: CyclicIncludes Category: Correctness
Severity: 1-high Applies to: all areas
Use case directly or indirectly includes itself.

A use case cannot include use cases that directly or indirectly include it. Remove some include
links to break the cycle.

• This is a WFR of the UML.
• You can view the graph of 'use case includes' in the graph structures window.
• Value returned: number of use cases participating in the cycle.

© 2002-2021. All rights reserved. 193

SDMetrics ® User Manual C.15 Usecase Rules

Rule: FunctionalDecomp Category: Style
Severity: 2-med Applies to: all areas
Use case both includes and is included in other use cases.

Several levels of include relations between use cases indicate a functional decomposition, which
should not be part of requirements analysis.

• Suggested in [Amb03] to avoid more than two levels of include relations; this rule flags
more than one level.

Rule: Extends Category: Style
Severity: 3-low Applies to: all areas
The use case is extending another use case.

The semantics of the extend relationship between use cases are often misunderstood, and there are
no definite criteria when to use "extend" and when to use "include" relationships. The suggestion is
to avoid using "extend" relationships in favor of the more intuitive "include".

• Suggested in [Amb03], [Oes04].

C.16 Statemachine Rules

Rule: RegularTransition Category: Correctness
Severity: 1-high Applies to: all areas
The protocol state machine contains a transition that is not a protocol transition.

Protocol state machines can only contain protocol transitions. Check the transitions and make sure
they are all protocol transitions.

• This is a WFR of the UML.
• Value returned: name of the source and target states of the transition.

Rule: ProtocolTransition Category: Correctness
Severity: 1-high Applies to: all areas
The state machine contains a protocol transition.

Protocol transitions can only occur in protocol state machines. Check the transitions and make sure
they are all regular transitions.

• This is a WFR of the UML.
• Value returned: name of the source and target states of the transition.

© 2002-2021. All rights reserved. 194

SDMetrics ® User Manual C.16 Statemachine Rules

Rule: HistoryState Category: Correctness
Severity: 1-high Applies to: all areas
The protocol state machine contains a history state.

Protocol state machine cannot have deep or shallow history states. Check the state machine and
remove all history states.

• This is a WFR of the UML.
• Value returned: name of the history state.

Rule: StatesWithActivities Category: Correctness
Severity: 1-high Applies to: all areas
The protocol state machine contains states with entry/exit/doactivities.

States in protocol state machines must not have any entry, exit, or do activities. Check the states
and remove the activities.

• This is a WFR of the UML.
• Value returned: the name of the state with activities.

Rule: TransWithEffects Category: Correctness
Severity: 1-high Applies to: all areas
The protocol state machine contains transitions with effects.

Transitions in protocol state machines must not have any effects. Check the transitions and remove
the effects.

• This is a WFR of the UML.
• Value returned: name of the source and target states of the transition.

C.17 Region Rules

Rule: TooManyInitialStates Category: Correctness
Severity: 1-high Applies to: all areas
The region has two or more initial states.

A region can have at most one initial state. Check the region and remove the surplus initial states.

• This is a WFR of the UML.
• Value returned: the number of initial states of the region.

© 2002-2021. All rights reserved. 195

SDMetrics ® User Manual C.17 Region Rules

Rule: InitialAndFinalStates Category: Style
Severity: 2-med Applies to: all areas
There is no initial or final state for the state machine.

The top-level region of a state machine should have one initial state and at least one final state so
that the state machine has a well-defined beginning and end.

• Suggested in [JRH04].

Rule: DupName Category: Correctness
Severity: 1-high Applies to: all areas
The region has two or more states of the same name.

Distinctive states should have distinctive names. Duplicate names can also cause problems during
code generation.

• Suggested in [RVR04].
• Value reported: name of the duplicate state.

Rule: EmptyRegion Category: Completeness
Severity: 1-high Applies to: all areas
The region has no states.

Add states to the region, or remove the region from the model.

Rule: DeepHistory Category: Correctness
Severity: 1-high Applies to: all areas
The region has two or more deep history states.

A region can have at most one deep history state. Check the region and delete the surplus history
states.

• This is a WFR of the UML.
• Value returned: the number of deep history states of the region.

© 2002-2021. All rights reserved. 196

SDMetrics ® User Manual C.17 Region Rules

Rule: ShallowHistory Category: Correctness
Severity: 1-high Applies to: all areas
The region has two or more shallow history states.

A region can have at most one shallow history state. Check the region and delete the surplus history
states.

• This is a WFR of the UML.
• Value returned: the number of shallow history states of the region.

C.18 State Rules

Rule: NoIncoming Category: Completeness
Severity: 1-high Applies to: all areas
State has no incoming transitions.

Without incoming transitions, the state can never be reached. Add one or more transitions to the
state.

• Suggested in [Amb03].

Rule: NoOutgoing Category: Completeness
Severity: 1-high Applies to: all areas
State has no outgoing transitions.

Without outgoing transitions, the state can never be left. Check if this is merely an oversight or the
actually intended behavior. In the former case, add the missing outgoing transition(s). In the latter
case, consider adding an outgoing transition to a final state.

• Suggested in [Amb03].

Rule: IllegalJoin Category: Correctness
Severity: 1-high Applies to: all areas
Join states must have two or more incoming and exactly one outgoing transition.

• This is a WFR of the UML.
• Value returned: number of incoming and outgoing transitions of the join state.

© 2002-2021. All rights reserved. 197

SDMetrics ® User Manual C.18 State Rules

Rule: IllegalFork Category: Correctness
Severity: 1-high Applies to: all areas
Fork states must have exactly one incoming and two or more outgoing transitions.

• This is a WFR of the UML.
• Value returned: number of incoming and outgoing transitions of the fork state.

Rule: IllegalChoice Category: Correctness
Severity: 1-high Applies to: all areas
A choice or junction state must have at least one incoming and one outgoing transition.

• This is a WFR of the UML.
• Value returned: number of incoming and outgoing transitions of the choice state.

Rule: MissingGuard Category: Correctness
Severity: 1-high Applies to: all areas
If there are two or more transitions from a choice state, they all must have guards.

A choice state realizes a dynamic conditional branch; the guards are required to evaluate the branch
conditions. Check the outgoing transitions and add the missing guard(s).

• Suggested in [Amb03].
• Value returned: name of the target state of the transition without guard.

Rule: IllegalInitial Category: Correctness
Severity: 1-high Applies to: all areas
An initial state must have no incoming and exactly one outgoing transition.

• This is a WFR of the UML.
• Value returned: number of incoming and outgoing transitions of the initial state.

Rule: IllegalFinal1 Category: Correctness
Severity: 1-high Applies to: all areas
A final state cannot have any outgoing transitions. Remove the outgoing transitions from the
model.

• This is a WFR of the UML.
• Value returned: number of outgoing transitions of the final state.

© 2002-2021. All rights reserved. 198

SDMetrics ® User Manual C.18 State Rules

Rule: IllegalFinal2 Category: Correctness
Severity: 1-high Applies to: all areas
A final state cannot have any regions or entry/exit/state behavior.

Check the state and remove all regions, entry, exit, and do activities.

• This is a WFR of the UML.
• Value returned: number of regions and activities of the final state.

Rule: IllegalEntryExit Category: Correctness
Severity: 1-high Applies to: all areas
Entry or exit point is not owned by a top-level region. Move the entry or exit point to the top-level
region of the state machine.

• This is a WFR of the UML.

Rule: IllegalHistory Category: Correctness
Severity: 1-high Applies to: all areas
The history state has two or more outgoing transitions.

A history state can have at most one outgoing transition. Check the history state and remove the
surplus outgoing transitions.

• This is a WFR of the UML.
• Value returned: the number of outgoing transitions of the history state.

Rule: Unnamed Category: Completeness
Severity: 3-low Applies to: all areas
State has no name.

While the UML allows for anonymous states, adding a descriptive name to the state increases the
readability and understandability of the diagram.

• Suggested in [Amb03].
• This rule does not check pseudo and final states. Their function is obvious, so they can be

left unnamed.

© 2002-2021. All rights reserved. 199

SDMetrics ® User Manual C.18 State Rules

Rule: BadForkOutgoing Category: Correctness
Severity: 1-high Applies to: all areas
Transitions from fork states must not have a guard or triggers. Check the outgoing transitions and
remove the guards and triggers.

• This is a WFR of the UML.

Rule: ForkTargetStates1 Category: Correctness
Severity: 1-high Applies to: all areas
Fork state has transitions to states in identical regions.

The transitions from a fork state must target states of different regions of a concurrent state. Check
the outgoing transitions and make sure they all target different regions.

• This is a WFR of the UML.

Rule: ForkTargetStates2 Category: Correctness
Severity: 1-high Applies to: all areas
Fork state has transitions to states in different concurrent states.

The transitions from a fork state in a state machine must target regions of the same concurrent state.
Check the outgoing transitions and make sure they all target the same concurrent state.

• This is a WFR of the UML.

Rule: JoinSourceStates1 Category: Correctness
Severity: 1-high Applies to: all areas
Join state has transitions from states in identical regions.

The transitions to a join state must originate from states of different regions of a concurrent state.
Check the incoming transitions and make sure they all come from different regions.

• This is a WFR of the UML.

Rule: JoinSourceStates2 Category: Correctness
Severity: 1-high Applies to: all areas
Join state has transitions from states in different concurrent states.

The transitions to a join state in a state machine must originate from regions of the same concurrent
state. Check the incoming transitions and make sure they all come from the same concurrent state.

• This is a WFR of the UML.

© 2002-2021. All rights reserved. 200

SDMetrics ® User Manual C.18 State Rules

Rule: BadForkTarget Category: Correctness
Severity: 1-high Applies to: all areas
Transitions from fork states in a state machine must not target a pseudo state. Check the outgoing
transitions and make sure they do not point to any pseudo states.

• This is a WFR of the UML.

Rule: BadJoinSource Category: Correctness
Severity: 1-high Applies to: all areas
Transitions to join states in a state machine must not originate from a pseudo state. Check the
incoming transitions and make sure they do not come from pseudo states.

• This is a WFR of the UML.

Rule: BadIncoming Category: Correctness
Severity: 1-high Applies to: all areas
Transitions to join states must not have triggers or guards. Check the incoming transitions and
remove all triggers and guards.

• This is a WFR of the UML.

Rule: BadOutgoing Category: Correctness
Severity: 1-high Applies to: all areas
Transitions from pseudo states must not have any triggers. Check the outgoing transitions and
remove all triggers and guards.

• This is a WFR of the UML.

Rule: MissingTarget Category: Correctness
Severity: 1-high Applies to: all areas
State has an outgoing transition not attached to a target state. Check the outgoing transitions of the
state and attach any loose ends to the proper target states.

• Suggested in [JRH04].

© 2002-2021. All rights reserved. 201

SDMetrics ® User Manual C.18 State Rules

Rule: MissingSource Category: Correctness
Severity: 1-high Applies to: all areas
State has an incoming transition not attached to a source state. Check the incoming transitions of
the state and attach any loose ends to the proper source states.

• Suggested in [JRH04].

C.19 Activitygroup Rules

Rule: EmptyGroup Category: Completeness
Severity: 2-med Applies to: all areas
The activity group does not contain any nodes or subgroups.

Add nodes to the activity group, or delete it from the model.

Rule: NoExpansionNode Category: Completeness
Severity: 1-high Applies to: all areas
The expansion region has no expansion node.

An expansion region must have at least one input expansion node. This is a WFR of the UML.

C.20 Action Rules

Rule: Unnamed Category: Completeness
Severity: 3-low Applies to: all areas
Action has no name.

Give the action a descriptive name that describes its purpose.

Rule: IsolatedAction Category: Completeness
Severity: 1-high Applies to: all areas
The action has neither incoming nor outgoing edges.

If nothing goes in or comes out of the action, the action is useless. Add the missing edges, or delete
the action.

© 2002-2021. All rights reserved. 202

SDMetrics ® User Manual C.21 Controlnode Rules

C.21 Controlnode Rules

Rule: IllegalInitial Category: Correctness
Severity: 1-high Applies to: all areas
The initial node has incoming edges our outgoing object flows.

Check the initial node to make sure it has no incoming edges, and that all outgoing edges are
control flows.

• This is a WFR of the UML.
• Value returned: the number of incoming edges and outgoing object flows.

Rule: IllegalFinal Category: Correctness
Severity: 1-high Applies to: all areas
Final nodes must not have any outgoing edges. Check the node and remove the outgoing edges.

• This is a WFR of the UML.
• Value returned: the number of outgoing edges of the final node.

Rule: IllegalJoin1 Category: Correctness
Severity: 1-high Applies to: all areas
Join nodes must have exactly one outgoing edge.

• This is a WFR of the UML.
• Value returned: the number of outgoing edges of the join node.

Rule: IllegalJoin2 Category: Correctness
Severity: 1-high Applies to: all areas
Outgoing edge of join is the wrong type.

If all of the join node's incoming edges are control flows, the outgoing edge must be a control flow.
If there is at least one incoming object flow, the outgoing edge must be an object flow.

• This is a WFR of the UML.

Rule: IllegalFork1 Category: Correctness
Severity: 1-high Applies to: all areas
Fork nodes must have exactly one incoming edge.

• This is a WFR of the UML.
• Value returned: the number of incoming edges of the fork node.

© 2002-2021. All rights reserved. 203

SDMetrics ® User Manual C.21 Controlnode Rules

Rule: MixedEdgeTypes Category: Correctness
Severity: 1-high Applies to: all areas
Edges from or to decision, merge, or fork nodes must be of the same type.

The incoming and outgoing edges of a decision, merge, or fork node must either be all control
flows or all object flows. A mixture of control and object flows attached to one such node is not
allowed.

• This is a WFR of the UML.

Rule: ForkOut Category: Completeness
Severity: 2-med Applies to: all areas
Fork nodes should have two or more outgoing edges. Otherwise, there is no fork. Check the node
and add the missing outgoing edges.

• Value returned: the number of outgoing edges of the fork node.

Rule: IllegalDecision Category: Correctness
Severity: 1-high Applies to: all areas
Decision nodes must have exactly one incoming edge.

• This is a WFR of the UML.
• Value returned: the number of incoming edges of the decision node.

Rule: DecisionOut Category: Completeness
Severity: 2-med Applies to: all areas
Decision nodes should have two or more outgoing edges, each with a guard.

Otherwise, there is no decision. Check the node and add the missing edges and/or guards.

• This is a WFR of the UML.
• Value returned: the number of outgoing edges of the node, and the number of guards on

these edges.

Rule: IllegalMerge Category: Correctness
Severity: 1-high Applies to: all areas
Merge nodes must have exactly one outgoing edge.

• This is a WFR of the UML.
• Value returned: the number of outgoing edges of the merge node.

Rule: NumIncoming Category: Completeness

© 2002-2021. All rights reserved. 204

SDMetrics ® User Manual C.21 Controlnode Rules

Severity: 2-med Applies to: all areas
Merge and join nodes should have two or more incoming edges. Otherwise, there is nothing to
merge/join. Check the node and add the missing incoming edges.

• This is a WFR of the UML.
• Value returned: the number of incoming edges of the node.

Rule: IsolatedNode Category: Completeness
Severity: 1-high Applies to: all areas
The control node has neither incoming nor outgoing edges.

• See rule IsolatedAction for actions.

C.22 Objectnode Rules

Rule: Unnamed Category: Completeness
Severity: 3-low Applies to: all areas
The object node has no name.

• See rule Unnamed for actions.

Rule: InOrOut Category: Correctness
Severity: 1-high Applies to: all areas
The activity parameter node has both incoming and outgoing flows.

Activity parameter nodes must have either only incoming or only outgoing edges, but not both at
the same time. Check the edges on the node and make sure they're all pointing in the same
direction.

• This is a WFR of the UML.

Rule: IsolatedNode Category: Completeness
Severity: 1-high Applies to: all areas
The object node has neither incoming nor outgoing edges.

• See rule IsolatedAction for actions.

© 2002-2021. All rights reserved. 205

SDMetrics ® User Manual C.23 Pin Rules

C.23 Pin Rules

Rule: NoIncoming Category: Completeness
Severity: 1-high Applies to: all areas
The input pin has no incoming edges.

Input pins require incoming edges to provide values to their actions. Add an incoming edge to the
pin.

Rule: NoOutgoing Category: Completeness
Severity: 1-high Applies to: all areas
The output pin has no outgoing edges.

Output pins require outgoing edges to deliver values provided by their actions. Add in outgoing
edge to the pin.

Rule: IllegalInputPin Category: Correctness
Severity: 1-high Applies to: all areas
The input pin has outgoing edges.

Only input pins on structured activity nodes can have outgoing edges. Check the pin and remove
any outgoing edges.

• This is a WFR of the UML.
• Value returned: number of outgoing edges of the pin.

Rule: IllegalOutputPin Category: Correctness
Severity: 1-high Applies to: all areas
The output pin has incoming edges.

Only output pins on structured activity nodes can have incoming edges. Check the pin and remove
any incoming edges.

• This is a WFR of the UML.
• Value returned: number of incoming edges of the pin.

© 2002-2021. All rights reserved. 206

SDMetrics ® User Manual C.23 Pin Rules

Rule: IllegalValuePin Category: Correctness
Severity: 1-high Applies to: all areas
The value pin has an incoming edge.

Value pins provide their actions with constant values and thus require no incoming edges. Check
the pin and remove any incoming edges.

• This is a WFR of the UML.
• Value returned: number of incoming edges of the pin.

C.24 Controlflow Rules

Rule: DanglingCtrlFlow Category: Completeness
Severity: 1-high Applies to: all areas
The control flow has no source or target node, or both.

Check the control flow and attach the proper source and target node, or delete the edge from the
model.

C.25 Objectflow Rules

Rule: DanglingObjectFlow Category: Completeness
Severity: 1-high Applies to: all areas
The object flow has no source or target node, or both.

Check the object flow and attach the proper source and target node, or delete the edge from the
model.

© 2002-2021. All rights reserved. 207

SDMetrics ® User Manual D: List of Matrices

D: List of Matrices
This appendix lists the relation matrices that are available for UML2.x models. The matrices for the
UML1.x metamodel are largely the same, or have equivalent counterparts, you can browse their
definitions in the measurement catalog (see Section 4.13 "The View 'Catalog'") when analyzing
UML1.x models.

Matrix: Actor-Usecase Row type: actor Column type: usecase
Association relationships between actors and use cases.

Shows which actor participates in which use case. A "1" indicates the actor in that row participates
in the use case in that column.

Matrix: Class_Gen Row type: class Column type: class
Generalization relationships between classes (from child to parent).

Shows which class a given class inherits from. A "1" indicates the class in that row is a child of the
class in that column.

Matrix: Class_Assoc Row type: class Column type: class
Association relationships between classes.

The numbers indicate how many associations the class in a row has with classes in the column. All
associations (or aggregations or compositions) with navigability from the row class to the column
class are counted.

Matrix: Package_Dependencies Row type: package Column type: package
Dependencies due to class/interface usage between packages.

Shows on which packages a given package depends on. A "1" indicates the package in that row has
a class or interface that uses a class or interface of the package in that column.

• See package metric R for what constitutes usage between classes and/or interfaces.

Matrix: Messages_Sent Row type: lifeline Column type: lifeline
Messages sent between lifelines.

The numbers indicate how many messages the lifeline in a row sends to the lifelines in the
columns.

© 2002-2021. All rights reserved. 208

SDMetrics ® User Manual E: Project File Format Definitions

E: Project File Format Definitions
This appendix contains the definitions of the project file formats for the metamodel definition file,
the XMI transformation file, and the metrics definition files. Being XML files, the definition is
presented in the form of a DTD (document type definition).

Metamodel definition file format

<!ELEMENT sdmetricsmetamodel (modelelement+) >
<!ATTLIST sdmetricsmetamodel
 version CDATA #REQUIRED>

<!ELEMENT modelelement (#PCDATA|attribute)*>
<!ATTLIST modelelement
 name CDATA #REQUIRED
 parent CDATA "sdmetricsbase">

<!ELEMENT attribute (#PCDATA)>
<!ATTLIST attribute
 name CDATA #REQUIRED
 type (ref|data) "data"
 multiplicity (one|many) "one">

XMI transformation file format

<!ELEMENT xmitransformations (xmitransformation+) >
<!ATTLIST xmitransformations
 version CDATA #REQUIRED
 requirexmiid (true|false) "true">

<!ELEMENT xmitransformation (trigger*) >
<!ATTLIST xmitransformation
 modelelement CDATA #REQUIRED
 xmipattern CDATA #REQUIRED
 recurse (true|false) "false"
 requirexmiid (true|false) #IMPLIED
 allowxmiidref (true|false} #IMPLIED
 condition CDATA #IMPLIED>

<!ELEMENT trigger EMPTY>
<!ATTLIST trigger
 name CDATA #REQUIRED
 type (attrval|cattrval|gcattrval|ctext|reflist|constant|ignore|
xmi2assoc) #REQUIRED
 attr CDATA #IMPLIED
 src CDATA #IMPLIED
 linkbackattr CDATA #IMPLIED>

© 2002-2021. All rights reserved. 209

SDMetrics ® User Manual E: Project File Format Definitions

Metric definition file format

<!ELEMENT sdmetrics (metric|set|matrix|rule|wordlist|reference|term|
 metricprocedure|setprocedure|ruleprocedure)+ >
<!ATTLIST sdmetrics
 version CDATA #REQUIRED
 ruleexemption CDATA #IMPLIED
 exemptiontag CDATA #IMPLIED
 exemptionvalue CDATA #IMPLIED>
<!ELEMENT metric (description?,(projection|setoperation|compoundmetric|
 attributevalue|nesting|signature|connectedcomponents|count|compare|
 subelements|filtervalue|substring))>
<!ATTLIST metric
 name CDATA #REQUIRED
 domain CDATA #REQUIRED
 inheritable (true|false) "false"
 category CDATA #IMPLIED
 internal (true|false) "false">

<!ELEMENT set (description?,(projection|compoundset|subelements|compare))>
<!ATTLIST set
 name CDATA #REQUIRED
 domain CDATA #REQUIRED
 inheritable (true|false) "false"
 multiset (true|false) "false">

<!ELEMENT matrix (description?,(projection|setoperation|compoundset))>
<!ATTLIST matrix
 name CDATA #REQUIRED
 from_row_type CDATA #REQUIRED
 to_col_type CDATA #REQUIRED>

<!ELEMENT rule (description?,(violation|cycle|projection|compoundset|
 valueset|compare))>
<!ATTLIST rule
 name CDATA #REQUIRED
 domain CDATA #REQUIRED
 inheritable (true|false) "false"
 category CDATA #IMPLIED
 severity CDATA #IMPLIED
 applies_to CDATA #IMPLIED
 disabled (true|false) "false">

<!ELEMENT wordlist (entry*)>
<!ATTLIST wordlist
 name CDATA #REQUIRED
 ignorecase (true|false) "false">

<!ELEMENT entry EMPTY>
<!ATTLIST entry
 word CDATA #REQUIRED>

<!ELEMENT description (#PCDATA)>

<!ENTITY % scopes "same|other|higher|lower|sameorhigher|sameorlower|samebranch|
 notsamebranch|containedin|notcontainedin|idem|notidem" >

<!ENTITY % filteratts
 'target CDATA #IMPLIED
 targetcondition CDATA #IMPLIED
 element CDATA #IMPLIED
 eltype CDATA #IMPLIED
 scope (%scopes;) #IMPLIED
 condition CDATA #IMPLIED'
>

© 2002-2021. All rights reserved. 210

SDMetrics ® User Manual E: Project File Format Definitions

<!ENTITY % sumatts
 'sum CDATA #IMPLIED
 stat (sum|min|max) "sum"'
>

<!ENTITY % ruleatts
 'precondition CDATA #IMPLIED
 mincnt CDATA #IMPLIED
 value CDATA #IMPLIED'
>

<!ELEMENT projection EMPTY>
<!ATTLIST projection
 relation CDATA #IMPLIED
 relset CDATA #IMPLIED
 %sumatts;
 set CDATA #IMPLIED
 valueset CDATA #IMPLIED
 exclude_self (true|false) "false"
 recurse (true|false) "false"
 nesting (true|false) "false"
 %ruleatts;
 %filteratts;>

<!ELEMENT compoundmetric EMPTY>
<!ATTLIST compoundmetric
 term CDATA #IMPLIED
 condition CDATA #IMPLIED
 alt CDATA #IMPLIED
 fallback CDATA #IMPLIED>

<!ELEMENT attributevalue EMPTY>
<!ATTLIST attributevalue
 attr CDATA #REQUIRED
 element CDATA #IMPLIED>

<!ELEMENT signature EMPTY>
<!ATTLIST signature
 set CDATA #REQUIRED
 name CDATA #IMPLIED
 prologue CDATA #IMPLIED
 value CDATA #IMPLIED
 separator CDATA #IMPLIED
 epilogue CDATA #IMPLIED
 %filteratts;>

<!ELEMENT connectedcomponents EMPTY>
<!ATTLIST connectedcomponents
 set CDATA #REQUIRED
 nodes CDATA #REQUIRED>

<!ELEMENT valuesetcount EMPTY>
<!ATTLIST valuesetcount
 set CDATA #REQUIRED>

<!ELEMENT count EMPTY>
<!ATTLIST count
 term CDATA #REQUIRED
 set CDATA #REQUIRED
 relset CDATA #REQUIRED
 %filteratts;>

<!ELEMENT compare EMPTY>
<!ATTLIST compare
 term CDATA #IMPLIED
 set CDATA #IMPLIED

© 2002-2021. All rights reserved. 211

SDMetrics ® User Manual E: Project File Format Definitions

 with CDATA #IMPLIED
 comp CDATA #IMPLIED
 return_element (true|false) "false"
 exclude_self (true|false) "true"
 %ruleatts;
 %filteratts;>

<!ELEMENT setoperation EMPTY>
<!ATTLIST setoperation
 set CDATA #REQUIRED
 %sumatts;
 %filteratts;>

<!ELEMENT nesting EMPTY>
<!ATTLIST nesting
 relation CDATA #REQUIRED>

<!ELEMENT subelements EMPTY>
<!ATTLIST subelements
 set CDATA #IMPLIED
 exclude_self (true|false) "true"
 valueset CDATA #IMPLIED
 %filteratts;
 %sumatts;>

<!ELEMENT filtervalue EMPTY>
<!ATTLIST filtervalue
 relation CDATA #IMPLIED
 relset CDATA #IMPLIED
 value CDATA #IMPLIED
 %filteratts;>

<!ELEMENT substring EMPTY>
<!ATTLIST substring
 source CDATA #REQUIRED
 separator CDATA #REQUIRED
 position CDATA #IMPLIED
 endseparator CDATA #IMPLIED
 limit CDATA #IMPLIED
 result CDATA #IMPLIED>

© 2002-2021. All rights reserved. 212

SDMetrics ® User Manual E: Project File Format Definitions

<!ELEMENT compoundset EMPTY>
<!ATTLIST compoundset
 set CDATA #REQUIRED
 cum CDATA #IMPLIED
 valueset CDATA #IMPLIED
 exclude_self (true|false) "false"
 %ruleatts;
 %filteratts;>

<!ELEMENT violation EMPTY>
<!ATTLIST violation
 condition CDATA #REQUIRED
 value CDATA #IMPLIED>

<!ELEMENT valueset EMPTY>
<!ATTLIST valueset
 set CDATA #REQUIRED
 precondition CDATA #IMPLIED
 mincnt CDATA #IMPLIED>

<!ELEMENT cycle EMPTY>
<!ATTLIST cycle
 nodes CDATA #REQUIRED
 minnodes CDATA #IMPLIED>

<!ELEMENT reference (#PCDATA|description)*>
<!ATTLIST reference
 tag CDATA #REQUIRED>

<!ELEMENT term (#PCDATA|description)*>
<!ATTLIST term
 name CDATA #REQUIRED>

<!ELEMENT metricprocedure EMPTY>
<!ATTLIST metricprocedure
 name CDATA #REQUIRED
 class CDATA #REQUIRED>
<!ELEMENT setprocedure EMPTY>
<!ATTLIST setprocedure
 name CDATA #REQUIRED
 class CDATA #REQUIRED>

<!ELEMENT ruleprocedure EMPTY>
<!ATTLIST ruleprocedure
 name CDATA #REQUIRED
 class CDATA #REQUIRED>

© 2002-2021. All rights reserved. 213

SDMetrics ® User Manual E: Project File Format Definitions

Grammar of expressions in metric definitions

The grammar for expressions in metric and set definitions is presented here using an extended
Backus-Naur Formalism (EBNF). Note that the production rule FCT_LITERAL for function names
recognized by the expression parser only lists the default functions provided by SDMetrics.

Expression = UptoExpression.

UptoExpression = OrExpression {"upto" OrExpression | "topmost"
OrExpression}.

OrExpression = AndExpression {"|" AndExpression | "or" AndExpression}.

AndExpression = EqualExpression {"&" EqualExpression |
 "and" EqualExpression}.

EqualExpression = RelationalExpression
 ["!=" RelationalExpression |
 "=" RelationalExpression].

RelationalExpression = AdditiveExpression ["<" AdditiveExpression |
 ">" AdditiveExpression | "<=" AdditiveExpression |
 ">=" AdditiveExpression |"lt" AdditiveExpression |
 "le" AdditiveExpression | "gt" AdditiveExpression |
 "ge" AdditiveExpression | "->" AdditiveExpression |
 "in" AdditiveExpression |
 "startswith" AdditiveExpression |
 "endswith" AdditiveExpression |
 "onlist" AdditiveExpression].

AdditiveExpression = MultiplicativeExpression {
 "+" MultiplicativeExpression |
 "-" MultiplicativeExpression}.

MultiplicativeExpression
 = PowerExpression {
 "*" PowerExpression | "/" PowerExpression }

PowerExpression = DotExpression {"^" DotExpression |
 "->" DotExpression |"in" DotExpression }.

DotExpression = UnaryExpression {"." UnaryExpression}.

UnaryExpression = "+" UnaryExpression | "-" UnaryExpression |
 "!" UnaryExpression | "not" UnaryExpression |
 FCT_LITERAL UnaryExpression | "self" |
 "(" Expression ")".

Constant = STRING_LITERAL | IDENTIFIER | INTEGER_LITERAL
 | FLOATING_POINT_LITERAL.

FCT_LITERAL = "ln" | "exp" | "sqrt" | "abs" |
 "ceil" | "floor" | "round" |
 "startswithcapital" | "startswithlowercase" |
 "islowercase" | "tolowercase" |
 "length" | "size" | "flatsize" |
 "isunique" | "typeof" | "qualifiedname".

INTEGER_LITERAL = DECIMAL_LITERAL.

DECIMAL_LITERAL = DIGIT {DIGIT}.

FLOATING_POINT_LITERAL= ({DIGIT} "." DIGIT {DIGIT} [EXPONENT])
 | DIGIT {DIGIT} [EXPONENT].

© 2002-2021. All rights reserved. 214

SDMetrics ® User Manual E: Project File Format Definitions

EXPONENT = ("e"|"E") ["+"|"-"] DIGIT {DIGIT}.

STRING_LITERAL = "'" {LETTER|DIGIT} "'".

IDENTIFIER = LETTER {LETTER|DIGIT}.

LETTER = "_" | "A".."Z" | "a".."z".

DIGIT = "0" | "1" | "2" | "3" | "4" | "5" |
 "6" | "7" | "8" | "9".

© 2002-2021. All rights reserved. 215

SDMetrics ® User Manual F: Glossary

F: Glossary
Completeness

Design rules of the "Completeness" category raise issues that hint at incomplete design. This
highlights model elements that still need some work. For example, empty packages, unused
classes, unnamed attributes, parameters without a type, etc.

Correctness
Design rules of the "Correctness" category raise issues that constitute illegal design. For
example, violation of well-formedness rules (WFR) of the UML.

Diagram
Diagram metrics pertain to the diagrams of the UML model. There are two types of diagram
metrics:

1. Diagram metrics that count how often a class, package, etc. appears on the diagrams in
the model. Similar to export coupling, the more often a model element appears on
diagrams, the more important is the role of the model element.
You may also look out for elements which do not appear on any diagrams. This could
indicate that the diagrams are not complete, or they may be the result of an incomplete
delete operation.

2. Metrics that count the number of model elements on a diagram. These measure the size
of the diagram. You may consider reorganizing large diagrams into several smaller
ones, e.g., based on the 7 +/-2 rule of the amount of information that people can deal
with at a time [Amb03].

On a technical note, many UML modeling tools use a proprietary solution to store diagram
layout information in the XMI file. If you do not obtain diagram metrics for your model, you
need a special XMI transformation file. Check the SDMetrics website if there is one available
for your UML tool.

Naming
Design rules of the "Naming" category raise issues concerning the names assigned to model
elements. For example, adherence to naming conventions for capitalization, use of keywords
in element names.

Severity
The severity of a design rule indicates how critical a violation is. The rules distinguish three
levels of severity:

• 1-high - violation of the rule constitutes illegal design, or poor design practices with a
strong negative impact on system quality. The issue should be resolved under all
circumstances.

• 2-med - violation of the rule may negatively impact system quality. The issue should
be resolved if there is no justification for the violation.

• 3-low - violation of the rule is not likely to have severe consequences, but
perfectionists will still want to address the issue.

Style
Design rules of the "Style" category raise design issues that are considered bad practice.
While these issues do not indicate illegal design, they may be detrimental to system quality in
the long run. For example, circular dependencies among packages, a class referencing one of
its subclasses, long parameter lists, etc.

© 2002-2021. All rights reserved. 216

SDMetrics ® User Manual F: Glossary

WFR
Well-formedness rules. The UML standards [OMG03] [OMG05] define a set of well-
formedness rules, or constraints, that any valid UML model must comply with.

© 2002-2021. All rights reserved. 217

SDMetrics ® User Manual G: References

G: References
[AGE95]

F. Abreu, M. Goulao, R. Esteves, "Toward the Design Quality Evaluation of Object-Oriented
Software Systems", 5th International Conference on Software Quality, Austin, Texas, October
1995.

[Amb03]
S. Ambler, "The Elements of UML Style", Cambridge University Press, 2003.
A comprehensive collection of style guidelines for the UML. Also available online at
www.agilemodeling.com/style

[BEGR00]
S, Benlarbi, K. El Emam, N. Goel, S. Rai, "Thresholds for Object-Oriented Measures",
Proceedings of ISSRE2000, 24-37, 2000.

[BDM97]
Briand, Devanbu, Melo, "An Investigation into coupling measures for object-oriented
designs", Proceedings of the 19th International Conference on Software Engineering, ICSE
'97, Boston, 412-421, 1997.

[BMM98]
W. Brown, R. Malveau, H, McCormick, T Mowbray, "AntiPatterns: Refactoring Software,
Architectures, and Projects in Crises", Wiley, 1998.

[BMW02]
L. Briand, W. Melo, J. Wuest, "Assessing the Applicability of Fault-Proneness Models Across
Object-Oriented Software Projects", IEEE Transactions on Software Engineering, 28 (7), 706-
720, 2002.
Also available from http://www.sdmetrics.com/Refs.html

[BW02]
L. Briand, J. Wuest, "Empirical Studies of Quality Models in Object-Oriented Systems",
Advances in Computers Vol. 59, 97-166, 2002.
Also available from http://www.sdmetrics.com/Refs.html

[BWDP00]
L. Briand, J. Wuest, J. Daly, V. Porter, "A Comprehensive Empirical Validation of Product
Measures for Object-Oriented Systems". Journal of Systems and Software 51, p. 245-273,
2000.
Also available from http://www.sdmetrics.com/Refs.html

[BWL01]
L. Briand, J. Wuest, H. Lounis, "Replicated Case Studies for Investigating Quality Factors in
Object-Oriented Designs, Empirical Software Engineering: An International Journal, Vol 6,
No 1, 11-58, 2001.
Also available from http://www.sdmetrics.com/Refs.html

[CK94]
S. Chidamber, C. Kemerer, "A Metrics Suite for Object-Oriented Design", IEEE Transactions
on Software Engineering, 20 (6), 476-493, 1994.

[CK98]
S. Chidamber, D. Darcy, C. Kemerer, "Managerial use of Metrics for Object-Oriented
Software: An Exploratory Analysis", IEEE Transactions on Software Engineering, 24 (8),
629-639, 1998.

[Fow99]
M. Fowler, "Refactoring: Improving the Design of Existing Code", Addison Wesley, 1999.

[FP96]

© 2002-2021. All rights reserved. 218

SDMetrics ® User Manual G: References

N. Fenton, S. Pfleeger, "Software Metrics: A Practical and Rigorous Approach". International
Thompson Computer Press, 1996.

[Fra03]
D. Frankel, "Model Driven Architecture: Applying MDA to Enterprise Computing", Wiley,
2003.

[ISO9126]
ISO/IEC FCD 9126-1.2, "Information Technology - Software Product. Quality- Part 1:
Quality Model", 1998.

[JRH04]
M. Jeckle, C. Rupp, J. Hahn, B. Zengler, S. Queins, "UML 2 glasklar", Carl Hanser Verlag,
2004.

[Lan03]
C. Lange, "Empirical Investigations in Software Architecture Completeness", Master's Thesis,
Department of Mathematics and Computing Science, Technical University Eindhoven, 2003.

[LH93]
W. Li, S. Henry, "Object-Oriented Metrics that Predict Maintainability", J. Systems and
Software, 23 (2), 111-122, 1993.

[LC94]
A. Lake, C. Cook, "Use of factor analysis to develop OOP software complexity metrics",
Proc. 6th Annual Oregon Workshop on Software Metrics, Silver Falls, Oregon, April 1994.

[LK94]
M. Lorenz, J. Kidd, "Object-oriented Software Metrics", Prentice Hall, 1994.

[LLW95]
Y. Lee, B. Liang, S. Wu, F. Wang, "Measuring Coupling and Cohesion of an Object-Oriented
Program Based On Information Flow", Proc. International Conference on Software Quality
(ICSQ '95), 81-90, 1995.

[Mar03]
R. Martin, "Agile Software Development: Principles, Patterns, and Practices", Prentice Hall,
2003.

[McC76]
T. McCabe, "A Complexity Measure", IEEE Transactions on Software Engineering, 2 (12),
308-320, 1976.

[MGP03]
D. Miranda, M. Genero, M. Piattini, "Empirical validation of metrics for UML statechart
diagrams", 5th Internation Conference on Enterprise Informations Systems (ICEIS03), 1, p.
87-95, 2003.

[NP98]
P. Nesi, T. Querci, "Effort estimation and prediction of object-oriented systems", Journal of
Systems and Software 42, p. 89-102, 1998.

[Oes04]
Bernd Oesterreich, "Die UML 2.0 Kurzreferenz fuer die Praxis", Oldenbourg Verlag, 2004.

[OMG03]
Object Management Group, "OMG Unified Modeling Language Specification", Version 1.5,
OMG Adopted Formal Specification formal/03-03-01, 2003.

[OMG05]
Object Management Group, "UML 2.0 Superstructure Specification", OMG Adopted Formal
Specification formal/05-07-04, 2005.

[OMG10]
Object Management Group, "OMG Systems Modeling Language", Version 1.2, OMG
Document Number formal/2010-06-02, 2010.

© 2002-2021. All rights reserved. 219

SDMetrics ® User Manual G: References

[Rie96]
A. Riel, "Object-Oriented Design Heuristics", Addison Wesley, 1996.

[RVR04]
A. Ramirez, P. Vanpeperstraete, A. Rueckert, K. Odutola, J. Bennett, L. Tolke, M. van der
Wulp, "ArgoUML User Manual v0.16", 2004.
Available from http://argouml.tigris.org.

[TSM92]
D. Tegarden, S. Sheetz, D. Monarchi, "The Effectiveness of Traditional Software Metrics for
Object-Oriented Systems", in: J. Nunamaker Jr, R. Sprague (eds.), Proceedings of the 25th
Hawaii International Conference on Systems Sciences, Vol. IV, IEEE Computer Society
Press, 359-368, Jan. 1992.

© 2002-2021. All rights reserved. 220

	1 Introduction
	2 Installation
	2.1 System Requirements
	2.2 Quick Installation and Start
	2.3 Installing SDMetrics
	2.3.1 Single User Installation
	2.3.2 Multiple Users Installation

	2.4 Updating SDMetrics from an Older Version
	2.5 Invoking SDMetrics
	2.6 Uninstalling SDMetrics

	3 Getting Started
	4 The SDMetrics User Interface
	4.1 Getting Help
	4.2 Specifying Project Settings
	4.2.1 Specifying Project Files
	4.2.1.1 Overview of Project Files
	4.2.1.2 The Project File Settings Dialog

	4.2.2 Specifying Filters
	4.2.2.1 Qualified Element Names
	4.2.2.2 Specifying Filters
	4.2.2.3 Filter Dialog

	4.2.3 Saving Project Settings
	4.2.4 Loading Project Settings

	4.3 Calculating and Viewing Metric Data
	4.3.1 Common controls in views

	4.4 The View 'Metric Data Tables'
	4.4.1 Highlighting Outliers

	4.5 The View 'Histograms'
	4.6 The View 'Kiviat Diagrams'
	4.7 The View 'Rule Checker'
	4.7.1 Filtering Design Rules
	4.7.2 Accepting Design Rule Violations

	4.8 The View 'Descriptive Statistics'
	4.9 The View 'Design Comparison'
	4.9.1 Calculating and Viewing Metric Deltas
	4.9.2 Metric Deltas Table
	4.9.3 Comparative Descriptive Statistics Table
	4.9.4 Mapping Design Elements
	4.9.5 Exporting Metric Deltas

	4.10 The View 'Relation Matrices'
	4.11 The View 'Graph Structures'
	4.11.1 Viewing Cycles
	4.11.2 Viewing Connected Components

	4.12 The View 'Model'
	4.13 The View 'Catalog'
	4.14 The View 'Log'
	4.15 Exporting Data
	4.15.1 Exporting Data Tables
	4.15.2 Exporting Graphs

	4.16 Setting Preferences
	4.16.1 Project File Sets
	4.16.1.1 Adding New Project File Sets
	4.16.1.2 Importing Project File Sets
	4.16.1.3 Editing, Copying, and Deleting Project File Sets
	4.16.1.4 The Default Project File Sets

	4.16.2 Percentiles
	4.16.3 Output
	4.16.4 Appearance
	4.16.5 Behavior

	5 Running SDMetrics from the Command Line
	6 Design Measurement
	6.1 Design Metrics and System Quality
	6.2 Structural Design Properties
	6.2.1 Size
	6.2.2 Coupling
	6.2.3 Inheritance
	6.2.4 Complexity
	6.2.5 Cohesion

	6.3 Data Analysis Techniques
	6.3.1 Descriptive Statistics
	6.3.2 Dimensional Analysis
	6.3.3 Rankings
	6.3.4 Quality Benchmarks
	6.3.5 Prediction Models

	7 SDMetrics Metamodel and XMI Transformation Files
	7.1 SDMetrics Metamodel
	7.2 XMI Transformation Files
	7.2.1 XMI Transformation File Format
	7.2.2 XMI Transformations and Triggers
	7.2.2.1 Trigger Type "attrval"
	7.2.2.2 Trigger Type "ctext"
	7.2.2.3 Trigger Type "cattrval"
	7.2.2.4 Trigger Type "gcattrval"
	7.2.2.5 Trigger Type "constant"
	7.2.2.6 Trigger Type "ignore"
	7.2.2.7 Trigger Type "xmi2assoc"

	7.2.3 Tips on Writing XMI Transformations
	7.2.3.1 The "linkbackattr" Trigger Attribute
	7.2.3.2 Multiple Triggers per Attribute
	7.2.3.3 "Context" Attribute Defaults
	7.2.3.4 Inherited Attributes and Triggers
	7.2.3.5 Optional XMI ID
	7.2.3.6 Conditional XMI Transformations

	8 Defining Custom Design Metrics and Rules
	8.1 Definition of Metrics
	8.1.1 Projection
	8.1.1.1 Attribute "relation"
	8.1.1.2 Attribute "relset"
	8.1.1.3 Filter Attribute "target"
	8.1.1.4 Filter Attributes "element" and "eltype"
	8.1.1.5 Filter Attributes "condition" and "targetcondition"
	8.1.1.6 Filter Attribute "scope"
	8.1.1.7 Attributes "sum" and "stat"
	8.1.1.8 Attribute "recurse"
	8.1.1.9 Attribute "nesting"
	8.1.1.10 Summary of Projection Attributes

	8.1.2 Compound Metrics
	8.1.3 Attribute Value
	8.1.4 Nesting
	8.1.5 Signature
	8.1.6 Connected Components
	8.1.7 Value Filter
	8.1.8 Subelements
	8.1.9 Substring

	8.2 Definition of Sets
	8.2.1 Projection
	8.2.1.1 Attribute "recurse"
	8.2.1.2 Attribute "set"
	8.2.1.3 Attribute "exclude_self"
	8.2.1.4 Attribute "valueset"

	8.2.2 Subelements

	8.3 Definition of Design Rules
	8.3.1 Violation
	8.3.2 Cycle
	8.3.3 Projection for Rules
	8.3.4 Valueset for Rules
	8.3.5 Word lists
	8.3.6 Exempting Approved Rule Violations

	8.4 Definition of Relation Matrices
	8.5 Expression Terms
	8.5.1 Constants and Identifiers
	8.5.1.1 Constants
	8.5.1.2 Identifiers

	8.5.2 Metric Expressions
	8.5.2.1 Mathematical Operators and Functions
	8.5.2.2 Special Operators

	8.5.3 Set Expressions
	8.5.4 Condition Expressions
	8.5.4.1 Relational Operators
	8.5.4.2 Boolean Functions
	8.5.4.3 Logical Operators

	8.5.5 Expression Terms and XML

	8.6 Writing Descriptions
	8.7 Defining Metrics for Profiles
	8.7.1 Profiles in UML 2
	8.7.2 Profiles in SDMetrics
	8.7.3 XMI Serialization of Profile Extensions
	8.7.4 Profile Extensions with Regular Model Elements
	8.7.5 Extension References without Inheritance
	8.7.6 Extension References with Inheritance
	8.7.7 Tips on Creating Metrics and Rules for Profile Extensions

	9 Extending the Metrics and Rule Engine
	9.1 Metric Procedures
	9.1.1 Conception of a New Metric Procedure
	9.1.2 Implementation of the Metric Procedure
	9.1.3 Using the New Metric Procedure

	9.2 Set Procedures
	9.3 Rule Procedures
	9.4 Boolean Functions
	9.4.1 Conception of a New Boolean Function
	9.4.2 Implementation of the Boolean Function
	9.4.3 Using the New Boolean Function

	9.5 Scalar Functions
	9.6 Set Functions
	9.7 Metrics Engine Extension Guidelines

	A: Metamodels
	A.1 Metamodel for UML 1.3/1.4
	A.2 Metamodel for UML 2.x

	B: List of Design Metrics
	B.1 Class Metrics
	B.2 Interface Metrics
	B.3 Package Metrics
	B.4 Interaction Metrics
	B.5 Usecase Metrics
	B.6 Statemachine Metrics
	B.7 Activity Metrics
	B.8 Component Metrics
	B.9 Node Metrics
	B.10 Diagram Metrics

	C: List of Design Rules
	C.1 Class Rules
	C.2 Interface Rules
	C.3 Datatype Rules
	C.4 Property Rules
	C.5 Operation Rules
	C.6 Parameter Rules
	C.7 Package Rules
	C.8 Association Rules
	C.9 Associationclass Rules
	C.10 Generalization Rules
	C.11 Interfacerealization Rules
	C.12 Dependency Rules
	C.13 Interaction Rules
	C.14 Actor Rules
	C.15 Usecase Rules
	C.16 Statemachine Rules
	C.17 Region Rules
	C.18 State Rules
	C.19 Activitygroup Rules
	C.20 Action Rules
	C.21 Controlnode Rules
	C.22 Objectnode Rules
	C.23 Pin Rules
	C.24 Controlflow Rules
	C.25 Objectflow Rules

	D: List of Matrices
	E: Project File Format Definitions
	F: Glossary
	G: References

