

The Software Design Metrics tool for the UML™

Last updated: 18-Feb-2011

UML Design Quality Measurement
● Calculate design metrics for UML designs, e.g.,

– Coupling between components
– Size of packages
– Complexity of classes
– Etc.

● Check UML design rules
– Detect incomplete, incorrect, redundant, or

inconsistent design
– Find style problems such as circular dependencies,

violation of naming conventions, and more

Design Properties: Coupling
● The degree to which an element in the design is

connected to other elements.
● Distinction: import coupling and export coupling

– Aka afferent/efferent coupling, fan-in/fan-out
● Impact of high coupling on system quality

– Decreased maintainability
– Decreased testability
– Decreased reliability
– Decreased reusability

Example Coupling Metrics
● Class coupling metrics

– Outgoing/incoming associations or dependencies
– Class used as parameter type of an operation
– Messages sent/received by instances of the class

● Package coupling metrics
– Associations or dependencies from or to

classes/interfaces outside the package
● Component coupling metrics

– Required interfaces, provided interfaces

Design Properties: Size
● Size of a design element: the number or size of

elements it contains.
– Number of attributes, operations in a class
– Number of classes, interfaces, in a package
– Number of states in a state machine
– ...

● Good indicators of effort
● Large elements indicate poor design

– E.g. “God” or “Blob” classes

Design Properties: Complexity
● The connectivity between the elements of a

design unit (“count of the edges in a graph”)
– Number of method calls between lifelines in a

sequence/communication diagram
– Number of transitions in a state chart
– Number of object/control flows in an activity

diagram
● Impact of high complexity on system quality

– Decreased understandability, testability
– Increased fault-proneness

Further Examples of Metrics
● Class inheritance metrics

– Depth of the class in the inheritance hierarchy
– Number of children or descendent classes

● The “Martin Metrics” for packages
– Abstraction (A), instability (I), distance from main

sequence (D)
● Metrics for use cases

– Included or extended use cases
– Size of a use case in terms of the size of its

sequence/activity diagrams

Design Rule Checking (1)
● Completeness

– Unused or unreachable elements
– Underspecified elements: unnamed, missing type,...

● Correctness
– Well-formedness rules of the UML
– E.g., circular inheritance, fork state does not target

orthogonal states, ...

Design Rule Checking (2)
● Style

– Circular dependencies between classes/packages
– Controversial design practices, e.g.:

● Multiple inheritance
● Use of association classes, n-ary associations

– Big classes, long parameter lists

● Naming
– Conventions for capitalization, prefixes, ...
– Use of programming language keywords, ...

Benefits of Design Measurement
● Identify potential design problems early on

● Better focus of review and testing efforts

● Increase system quality and quality assurance
effectiveness

● Refine your LOC or effort estimates for
implementation, testing, maintenance

From Model to Metrics with XMI (1)

UML Tool
(RSM, MagicDraw,
Together Designer,

Poseidon, ...)

UML Model
as XMI File

From Model to Metrics with XMI (2)
● XMI: XML Metadata Interchange

– XML-based representation of a UML Model
– Standardized by OMG; key technology of the MDA
– Supported by all major UML modeling tools
– Different versions of XMI: 1.0/1.1/1.2/2.0/2.1

● SDMetrics supports all versions of XMI
– Works with all modeling tools with XMI export
– Meta models for UML 1.x and UML 2.x

Metric Analysis: Table View

Metric Analysis: Metric View

Metric Analysis: Element View

Design Rule Checking

Design Comparisons

Relation Matrices

Data Export
● Detailed metric data analysis with statistical

software packages or spreadsheets
● Export of data tables

– Tab or comma-separated text files
– HTML
– XML for Microsoft Excel
– OpenOffice.org Calc

● Export of graphs
– SVG, PNG, JPG

Summary of SDMetrics' Features
● Over 120 design metrics, 130 design rules

– Cover all diagram types of the UML
– Users can define new metrics and rules

● Works with all UML tools with XMI export
– Customizable XMI import

● Batch processing via command line interface
● Fast execution

– Analyses large designs with hundreds of thousands
of model elements within seconds

Customizing SDMetrics

User-defined UML meta models

User-defined XMI import

User-defined metrics and rules

SDMetrics Project Files

UML Modeling Tool

SDMetrics

XMI Source File

Metric Data Output

XMI Transformation File

Metamodel Definition File

Metrics Definition File

Meta Model Definition File
● Defines the model elements that SDMetrics

knows:
– Meta classes
– Attributes
– Relationships

● Defined as far as is needed for metric
calculation and design rule checking
– Not a complete 1:1 representation of the standard

UML meta models
– Default meta models for UML1.3/1.4 and UML2.x

Meta Model Definition File Sample
<modelelement name="class">
<attribute name="visibility"
 type=”data” multiplicity=”one”/>
<attribute name="abstract" type=”data”/>
<attribute name="ownedattributes"
 type="ref" multiplicity="many" />
<attribute name="ownedoperations"
 type="ref" multiplicity="many" />
...

</modelelement>

XMI Transformation File (1)
● How to retrieve information of the model

elements and attributes from XMI files
● Defines a mapping:

UML meta model as manifested in the XMI file

SDMetrics' simplified meta model

Excerpt from an XMI File

<ownedMember xmi:type='UML:Class'
xmi:id='id345' visibility='public'
isAbstract='false' name='MyClass'>
<ownedAttribute xmi:id='id1138'
 name=”myAttr” visibility='private'
 type='id42'/>
<ownedOperation xmi:id='id1139'
 name='myOperation' visibility='public'>
 <ownedParameter xmi:id='1140'
 name='par1' type='id123' />
</ownedOperation>
...

</ownedMember>

XMI Transformation File Sample
<xmitransformation modelelement="class"
xmipattern="UML:Class" recurse="true">
<trigger name="visibility"
 type="attrval" attr="visibility"/>
<trigger name="abstract" type="attrval"
 attr="isAbstract"/>
<trigger name="ownedattributes"
 type="xmi2assoc" src="UML:Property"
 attr="ownedAttribute" />
<trigger name="ownedoperations"
 type="xmi2assoc" src="UML:Operation"
 attr="ownedOperation" />

...

XMI Transformation File (2)
● UML model exchange via XMI is difficult in

practice
– Different versions of the XMI
– Implementations not fully compliant with standards

➔ Customizable XMI import to account for this!
● Default XMI transformation files:

– For UML1.3/1.4 meta model and XMI 1.x files
– For UML2.x meta model and XMI 2.0 / 2.1 files

● Plus specialized files for non-conforming tools

Metric Definition File
● Contains the definitions of:

– Design metrics
– Design rules
– Relation matrices
– Complete documentation with glossary and

literature references

● SDMetrics provides default metric definitions for
UML1.x and UML2.x meta models

Example Metric Definition
<metric name="NumPubOps" domain="class"
category="Size">
<description>The number of public
 operations in a class.((p))
 Same as metric metric://class/NumOps/,
 but only counts operations with public
 visibility.
 ((ul))((li))Also known as: NPM (Number
 of Public Methods) ref://LK94/.((/ul))
</description>
<projection relset="ownedoperations"
condition="visibility='public'"/>

</metric>

Example Metric Definition (2)
● Definitions of intermediate “helper” sets and

metrics
– E.g. sets “InAssoc” and “OutAssoc” of incoming and

outgoing associations for an interface
<metric name="Assoc" domain="interface"
category="Coupling">
<description>The number of associations
 the interface participates in.
</description>
<compoundmetric
 term="size(InAssoc+OutAssoc)" />

</metric>

Example Rule Definition
<rule name="OutgoingAssoc" severity="low"
domain="interface" category="Style" >
<description>The interface has outgoing
 associations.((p))
 ref://Oes04/ suggests to avoid this.
</description>
<violation condition="size(OutAssoc)!=0"
 value="'#Assoc: '+size(OutAssoc)" />

</rule>

Applications of Design Metrics

Building Quality Benchmarks

Building Predictive Models

Quality Benchmarks (1)
● Scenario: acquisition of new components

– Developed in-house or bought from external source
● Is the design of the components acceptable?

– Demand rework if there are expected
maintainability/reliability problems

● Comprehensive inspection/testing often too
expensive
– Need a pointer to potentially critical design areas to

inspect or test

Quality Benchmarks (2)
● Build a database of measurement values

– Selected measures of size, coupling, complexity
– Obtained from existing proven, “tried and tested”

components
● Apply measurements to new components
● Compare obtained measurement distributions

Quality Benchmarks (3)

0

5

10

15

20

25

30

0 1 765432 8

invoked operations

cl

as
se

s
(%

)

Benchmark Candidate

Prediction Models
● Design metrics data difficult to interpret

– component XYZ has “coupling=5”, “complexity=7”
● What does this mean in terms of …

– future maintenance work for this component
– likelihood that the component still contains defects

● Quantify the relationship between metrics data
and system quality for better interpretation

Building A Prediction Model

Component
Design

Design
Metrics

Fault Data

Statistic
Analysis

Prediction
Model

Component
Design

Component
Design

Inspection

Design
Metrics

Fault Data

Design
Metrics

Fault Data

Using the Prediction Model

Prediction
Model

Component
OK

New
Component

Design

Inspection

Design
Metrics

P(fault)>25%
P(fault)<25%

Prediction Model Pros and Cons
● Pros

– Captures the combined effect of multiple influencing
factors in one cohesive model

– Translates non-interpretable internal quality data to
easily interpreted external quality data

● Cons
– Very data intensive
– Requires statistical expertise

